Уточнить поиск
Результаты 641-650 из 7,292
Bioremediation of hazardous pollutants from agricultural soils: A sustainable approach for waste management towards urban sustainability Полный текст
2022
Yaashikaa, P.R. | Kumar, P Senthil
Soil contamination is perhaps the most hazardous issue all over the world; these emerging pollutants ought to be treated to confirm the safety of our living environment. Fast industrialization and anthropogenic exercises have resulted in different ecological contamination and caused serious dangerous health effects to humans and animals. Agro wastes are exceptionally directed because of their high biodegradability. Effluents from the agro-industry are a possibly high environmental risk that requires suitable, low-cost, and extensive treatment. Soil treatment using a bioremediation method is considered an eco-accommodating and reasonable strategy for removing toxic pollutants from agricultural fields. The present review was led to survey bioremediation treatability of agro soil by microbes, decide functional consequences for microbial performance and assess potential systems to diminish over potentials. The presence of hazardous pollutants in agricultural soil and sources, and toxic health effects on humans has been addressed in this review. The present review emphasizes an outline of bioremediation for the effective removal of toxic contaminants in the agro field. In addition, factors influencing recent advancements in the bioremediation process have been discussed. The review further highlights the roles and mechanisms of micro-organisms in the bioremediation of agricultural fields.
Показать больше [+] Меньше [-]Color preferences and gastrointestinal-tract retention times of microplastics by freshwater and marine fishes Полный текст
2022
Okamoto, Konori | Nomura, Miho | Horie, Yoshifumi | Okamura, Hideo
We examined ingestion and retention rates of microplastics (MPs) by two freshwater (Japanese medaka and zebrafish) and two marine fish species (Indian medaka and clown anemonefish) to determine their color preferences and gastrointestinal-tract retention times. In our ingestion experiments, clown anemonefish ingested the most MP particles, followed by zebrafish, and then Japanese and Indian medaka. Next, we investigated color preferences among five MP colors. Red, yellow, and green MP were ingested at higher rates than gray and blue MPs for all tested fish species. To test whether these differences truly reflect a recognition of and preference for certain colors based on color vision, we investigated the preferences of clown anemonefish for MP colors under light and dark conditions. Under dark conditions, ingestion of MP particles was reduced, and color preferences were not observed. Finally, we assessed gastrointestinal-tract retention times for all four fish species. Some individuals retained MP particles in their gastrointestinal tracts for over 24 h after ingestion. Our results show that fish rely on color vision to recognize and express preferences for certain MP colors. In addition, MP excretion times varied widely among individuals. Our results provide new insights into accidental MP ingestion by fishes.
Показать больше [+] Меньше [-]Limited effects of environmentally-relevant concentrations in seawater of dibutyl phthalate, dimethyl phthalate, bisphenol A, and 4-nonylphenol on the reproductive products of coral-reef organisms Полный текст
2022
Vered, Gal | Shenkar, Noa
Plastic additives (PAs) are chemical compounds incorporated into the plastic during the manufacturing process. Phthalate acid esters, bisphenols, and nonylphenols are all PAs found in marine environments and associated with endocrine-disrupting processes. However, our knowledge regarding the impact of endocrine-disrupting PAs on coral-reef organisms is limited. As reef population structure is directly linked to reproduction and larval settlement processes, interference with hormonal systems can impact coral-reef community structure, particularly if the effects of PAs differ among species. In the current study we exposed the reproductive products of four tropical coral-reef invertebrates to environmentally-relevant concentrations of four prevalent PAs in seawater: dibutyl phthalate (DBP), dimethyl phthalate, (DMP), 4-nonylphenol (4-NP), and bisphenol A (BPA), as well as to 10³ higher laboratory concentrations of these PAs. Our results revealed that apart from the significant negative effect of the 1 μg/L of 4-NP on the settlement of the soft coral Rhytisma fulvum, none of the other tested materials demonstrated a significant effect on the exposed organisms at environmentally-relevant concentrations in seawater. The 4-NP high laboratory concentration (1000 μg/L), however, had significant negative effects on all the examined species. The high laboratory BPA concentration (1000 μg/L) significantly reduced fertilization success in the solitary ascidian Herdmania momus, up to its complete failure to reproduce. Moreover, the high laboratory DMP concentration (100 μg/L) had a significant negative effect on planulae settlement of the stony coral Stylophora pistillata. Our findings demonstrate the negative and selective effects of PAs on the development and reproduction of coral-reef organisms; and, specifically, the significant effect found following exposure to 4-NP. Consequently, if we aim to fully understand the impact of these contaminants on this endangered ecosystem, we suggest that the actual concentrations within the living organism tissues should be tested in order to produce relevant risk assessments for brooding-coral species.
Показать больше [+] Меньше [-]Integrated process analysis retrieval of changes in ground-level ozone and fine particulate matter during the COVID-19 outbreak in the coastal city of Kannur, India Полный текст
2022
Ye, Fei | Rupakheti, Dipesh | Huang, Lin | T, Nishanth | Kumar MK, Satheesh | Li, Lin | KT, Valsaraj | Hu, Jianlin
The Community Multi-Scale Air Quality (CMAQ) model was applied to evaluate the air quality in the coastal city of Kannur, India, during the 2020 COVID-19 lockdown. From the Pre1 (March 1–24, 2020) period to the Lock (March 25–April 19, 2020) and Tri (April 20–May 9, 2020) periods, the Kerala state government gradually imposed a strict lockdown policy. Both the simulations and observations showed a decline in the PM₂.₅ concentrations and an enhancement in the O₃ concentrations during the Lock and Tri periods compared with that in the Pre1 period. Integrated process rate (IPR) analysis was employed to isolate the contributions of the individual atmospheric processes. The results revealed that the vertical transport from the upper layers dominated the surface O₃ formation, comprising 89.4%, 83.1%, and 88.9% of the O₃ sources during the Pre1, Lock, and Tri periods, respectively. Photochemistry contributed negatively to the O₃ concentrations at the surface layer. Compared with the Pre1 period, the O₃ enhancement during the Lock period was primarily attributable to the lower negative contribution of photochemistry and the lower O₃ removal rate by horizontal transport. During the Tri period, a slower consumption of O₃ by gas-phase chemistry and a stronger vertical import from the upper layers to the surface accounted for the increase in O₃. Emission and aerosol processes constituted the major positive contributions to the net surface PM₂.₅, accounting for a total of 48.7%, 38.4%, and 42.5% of PM₂.₅ sources during the Pre1, Lock, and Tri periods, respectively. The decreases in the PM₂.₅ concentrations during the Lock and Tri periods were primarily explained by the weaker PM₂.₅ production from emission and aerosol processes. The increased vertical transport rate of PM₂.₅ from the surface layer to the upper layers was also a reason for the decrease in the PM₂.₅ during the Lock periods.
Показать больше [+] Меньше [-]The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study Полный текст
2022
Chen, Chaoyue | Huang, Jen-How | Meusburger, Katrin | Li, Kai | Fu, Xuewu | Rinklebe, Jörg | Alewell, Christine | Feng, Xinbin
Taking advantage of the different histories of Hg deposition in Davos Seehornwald in E-Switzerland and Changbai Mountain in NE-China, the influence of atmospheric deposition on Hg soil dynamics in forest soil profiles was investigated. Today, Hg fluxes in bulk precipitation were similar, and soil profiles were generally sinks for atmospherically deposited Hg at both sites. Noticeably, a net release of 2.07 μg Hg m⁻² yr⁻¹ from the Bs horizon (Podzol) in Seehornwald was highlighted, where Hg concentration (up to 73.9 μg kg⁻¹) and soil storage (100 mg m⁻³) peaked. Sequential extraction revealed that organic matter and crystalline Fe and Al hydr (oxide)-associated Hg decreased in the E horizon but increased in the Bs horizon as compared to the Ah horizon, demonstrating the coupling of Hg dynamics with the podzolisation process and accumulation of legacy Hg deposited last century in the Bs horizon. The mor humus in Seehornwald allowed Hg enrichment in the forest floor (182–269 μg kg⁻¹). In Changbai Mountain, the Hg concentrations in the Cambisol surface layer with mull humus were markedly lower (<148 μg kg⁻¹), but with much higher Hg soil storage (54–120 mg m⁻³) than in the Seehornwald forest floor (18–27 mg m⁻³). Thus, the vertical distribution pattern of Hg was influenced by humus form and soil type. The concentrations of Hg in soil porewater in Seehornwald (3.4–101 ng L⁻¹) and in runoff of Changbai Mountain (1.26–5.62 ng L⁻¹) were all low. Moreover, the pools of readily extractable Hg in the soils at both sites were all <2% of total Hg. Therefore, the potential of Hg release from the forest soil profile to the adjacent aquatic environment is currently low at both sites.
Показать больше [+] Меньше [-]A lentic microcosm approach to determine the toxicity of DDT and deltamethrin on diatom communities Полный текст
2022
Kock, Anrich | Smit, Nico J. | Taylor, Jonathan C. | Wolmarans, Nico J. | Wepener, V.
Worldwide the use of pesticides has increased, especially in the industry and agriculture sector even though they contain highly toxic substances. The use of pesticides has various negative effects on the aquatic ecosystem and organisms within these ecosystems. The paper aimed to assess the effects of increased concentrations of malaria vector control insecticides (Dichlorodiphenyltrichloroethane (DDT) and Deltamethrin (DTM)) on the freshwater diatom community structure using a microcosm approach as well as determine whether a mixture (DDT 1:1 Deltamethrin) exposure will have a greater influence on the diatom community when compared to single exposures of these insecticides. Diatoms were exposed to a high and low concentration (based on LC50 data for freshwater Xenopus laevis from the USEPA Ecotox database) of DDT, DTM and a mixture in lentic microcosms over a total period of 28 days. Results indicated that irrespective of exposure concentrations, DDT, DTM and a mixture had negative effects on the diatom community including functionality and vitality as these insecticides induced changes to their chloroplasts. There was an increased percentage dead cells for all exposures compared to the control, with the insecticides having a phototoxic effect on the diatom community. Exposure to the selected insecticides caused a significant decrease in some diatom metrics indicating the negative effects these insecticides have on the diatom metrics. Therefore, diatoms may prove to be useful as bio-indicators in ecotoxicology studies when assessing the effects of any insecticide exposures.
Показать больше [+] Меньше [-]Assessment on the source of geochemical anomalies in the sediments of the Changjiang river (China), using a modified enrichment factor based on multivariate statistical analyses Полный текст
2022
Dominech, Salvatore | Albanese, Stefano | Guarino, Annalise | Yang, Shouye
Rivers can be sinks for potential toxic elements (PTEs) inputted in their systems by both natural and anthropic processes. Many indices have been proposed to assess the contamination degree of sediments and the environmental conditions of surficial water bodies. Above all, enrichment factor (EF) is the most used tool, but also it is the most debated for its limitations. The need for a reference element and for a background/baseline composition makes the EF method dependent on the researcher's expertise, implying that its repeatability may not be granted. Starting from the awareness that geochemical processes, bringing to compositional changes in the environmental matrices, involve multiple elements rather than individual variables, we developed a modified EF (mEF) based on the use of elemental associations. Different multivariate statistical methods (i.e. Robust Principal Component Analysis and Fuzzy Clustering), in a compositional data analysis (CoDA) perspective, were used to set all the terms of the mEF. The mEF was applied to 101 sediment samples collected from a 2 m-long core, covering a sedimentation period of about 150 years (1850–2007), located in the lower Changjiang River (China). The method resulted effective in recognizing most of the signals proceeding from the main natural and anthropogenic events which affected the lower river basin in the considered timespan. The largest geochemical variations recorded fit well the flooding events occurred; besides, the effects produced on the system by the recent socio-economic development (following the end of the civil war in 1949 and the beginning of economic reforms in 1978) and the start-up of the Three Gorges Dam (the world's largest power station since 2012) were also intercepted. The proposed method represents a step forward to enhance the effectiveness of the EF in discriminating geochemical anomalies that may be significant to assess the human historical impact on the environment.
Показать больше [+] Меньше [-]Effects of macrophytes and environmental factors on sediment denitrification in a subtropical reservoir Полный текст
2022
Bu, Hongmei | Fry, Brian | Burford, Michele A.
Sediment denitrification plays an important role in nitrogen removal in aquatic systems. However, the importance in nitrogen removal in reservoirs, with a focus on seasonal differences of conditions such as macrophyte beds and environmental factors, is less well understood. This study examined sediment denitrification rate (Dₙ), and their potential controlling factors were determined in both macrophyte beds and deeper waters in the subtropical reservoir. The mean Dₙ in the reservoir annually was 18.0 ± 6.3 (mean ± S.E.) mmol N m⁻² d⁻¹, with significant seasonal variation (p < 0.01), i.e. 43.2 ± 12.8, 6.7 ± 6.3, and 4.0 ± 2.2 mmol N m⁻² d⁻¹ in winter, spring and summer respectively. There were no statistical differences in Dₙ between shallow waters with macrophyte beds and deeper waters without macrophyte beds, although macrophyte beds had higher denitrification rates in summer. The Dₙ rates were significantly correlated with temperature, conductivity, dissolved oxygen, pH, nitrate-nitrogen concentration (NO₃⁻-N) (p < 0.01) and turbidity (p < 0.05). Linear regression models demonstrated environmental variables explained between 36% and 76% of the variation in Dₙ. The correlation with NO₃⁻-N concentrations suggests that it may be a limited factor for Dₙ. Annual nitrogen removal of the reservoir by a combination of sediment and water denitrification was totally estimated to be 370 t N with an annual removal efficiency of approximately 11%. Nitrogen removal was much higher in winter than other seasons, with about 305 t N removed, accounting for 12% of the total nitrogen inputs. Therefore, denitrification appears to play a minor role throughout much of the year, but in winter months when nitrate accumulates, it may play a more major role.
Показать больше [+] Меньше [-]Effects of respirators to reduce fine particulate matter exposures on blood pressure and heart rate variability: A systematic review and meta-analysis Полный текст
2022
Faridi, Sasan | Brook, Robert D. | Yousefian, Fatemeh | Hassanvand, Mohammad Sadegh | Nodehi, Ramin Nabizadeh | Shamsipour, Mansour | Rajagopalan, Sanjay | Naddafi, Kazem
Particulate-filtering respirators (PFRs) have been recommended as a practical personal-level intervention to protect individuals from the health effects of particulate matter exposure. However, the cardiovascular benefits of PFRs including improvements in key surrogate endpoints remain unclear. We performed a systematic review and meta-analysis of randomized studies (wearing versus not wearing PFRs) reporting the effects on blood pressure (BP) and heart rate variability (HRV). The search was performed on January 3, 2022 to identify published papers until this date. We queried three English databases, including PubMed, Web of Science Core Collection and Scopus. Of 527 articles identified, eight trials enrolling 312 participants (mean age ± standard deviation: 36 ± 19.8; 132 female) met our inclusion criteria for analyses. Study participants wore PFRs from 2 to 48 h during intervention periods. Wearing PFRs was associated with a non-significant pooled mean difference of −0.78 mmHg (95% confidence interval [CI]: −2.06, 0.50) and −0.49 mmHg (95%CI: −1.37, 0.38) in systolic and diastolic BP (SBP and DBP). There was a marginally significant reduction of mean arterial pressure (MAP) by nearly 1.1 mmHg (95%CI: −2.13, 0.01). The use of PFRs was associated with a significant increase of 38.92 ms² (95%CI: 1.07, 76.77) in pooled mean high frequency (power in the high frequency band (0.15–0.4 Hz)) and a reduction in the low (power in the low frequency band (0.04–0.15Hz))-to-high frequency ratio [−0.14 (95%CI: −0.27, 0.00)]. Other HRV indices were not significantly changed. Our meta-analysis demonstrates modest or non-significant improvements in BP and many HRV parameters from wearing PFRs over brief periods. However, these findings are limited by the small number of trials as well as variations in experimental designs and durations. Given the mounting global public health threat posed by air pollution, larger-scale trials are warranted to elucidate more conclusively the potential health benefits of PFRs.
Показать больше [+] Меньше [-]Sources of ammonium enriched in groundwater in the central Yangtze River Basin: Anthropogenic or geogenic? Полный текст
2022
Liang, Ying | Ma, Rui | Nghiem, Athena | Xu, Jie | Tang, Liansong | Wei, Wenhao | Prommer, Henning | Gan, Yiqun
The occurrence of excessive ammonium in groundwater threatens human and aquatic ecosystem health across many places worldwide. As the fate of ammonium in groundwater systems is often affected by a complex mixture of transport and biogeochemical transformation processes, identifying the sources of groundwater ammonium is an important prerequisite for planning effective mitigation strategies. Elevated ammonium was found in both a shallow and an underlying deep groundwater system in an alluvial aquifer system beneath an agricultural area in the central Yangtze River Basin, China. In this study we develop and apply a novel, indirect approach, which couples the random forest classification (RFC) of machine learning method and fluorescence excitation-emission matrices with parallel factor analysis (EEM-PARAFAC), to distinguish multiple sources of ammonium in a multi-layer aquifer. EEM-PARAFAC was applied to provide insights into potential ammonium sources as well as the carbon and nitrogen cycling processes affecting ammonium fate. Specifically, RFC was used to unravel the different key factors controlling the high levels of ammonium prevailing in the shallow and deep aquifer sections, respectively. Our results reveal that high concentrations of ammonium in the shallow groundwater system primarily originate from anthropogenic sources, before being modulated by intensive microbially mediated nitrogen transformation processes such as nitrification, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). By contrast, the linkage between high concentrations of ammonium and decomposition of soil organic matter, which ubiquitously contained nitrogen, suggested that mineralization of soil organic nitrogen compounds is the primary mechanism for the enrichment of ammonium in deeper groundwaters.
Показать больше [+] Меньше [-]