Уточнить поиск
Результаты 651-660 из 4,938
Microcystin-LR removal by ion exchange: Investigating multicomponent interactions in natural waters Полный текст
2019
Dixit, Fuhar | Barbeau, Benoit | Mohseni, Madjid
Microcystin-LR (MCLR) is the most commonly encountered toxic microcystin variant. MCLR is usually present along with common surface water constituents such as inorganic ions and natural organic matter (NOM) which compete with MCLR for active sites during ion exchange (IX) process. Consequently, development of a multicomponent competitive model is essential for practical IX applications. This is critically important given that the NOM characteristics (charge density and molecular weight distribution) and inorganic ions concentrations are spatially variable and can change seasonally. In the present study, a systematic study was carried out into the multicomponent interactions of IX resin with inorganic ions and NOM during the MCLR removal process. This involved evaluation of MCLR removal in a single component system (i.e., MCLR only), a dual component system (MCLR and one other contaminant such as NOM), and a multiple component system (MCLR with NOM and different inorganic ions present in natural waters). A comprehensive understanding of the dynamic adsorption behavior showed that the experimental data for single component systems agree well with a Freundlich isotherm. For multicomponent interactions, the Equivalent Background Concentration (EBC) model which is derived from the Ideal Adsorption Solution Theory (IAST) provided the best correlation with the experimental data in natural waters. The concentrations of competing NOM and inorganic ions estimated by the EBC model were <10% of their initial concentrations. Sulphates are the most competitive inorganic ions followed by nitrates and bicarbonates and the multicomponent interactions could be well predicted by using the IAST-EBC model. However, the EBC model failed in the presence of higher molecular weight Suwannee River Humic Acid (SRHA) molecules due to neglecting of the pore blocking phenomenon. In the presence of higher molecular weight SRHA molecules, the Redlich-Peterson Isotherm (RP) model exhibited a better performance than the Sheindorf–Rebuhn–Sheintuch (SRS) and the EBC models.
Показать больше [+] Меньше [-]Molecular modeling and MD-simulation studies: Fast and reliable tool to study the role of low-redox bacterial laccases in the decolorization of various commercial dyes Полный текст
2019
Ahlawat, Shruti | Singh, Deepti | Virdi, Jugsharan Singh | Sharma, Krishna Kant
Synthetic dyes are toxic and carcinogenic in nature, which also causes environmental pollution. The present study was aimed to decolorize various commercial dyes using purified recombinant bacterial laccases. Laccase gene from Yersinia enterocolitica strain 8081 (yacK), Y. enterocolitica strain 7 (yacK) and Bacillus pumilus DSKK1 was cloned in vector pET28a and overproduced in host Escherichia coli BL21. The high yield of recombinant laccase protein resulted in the formation of inclusion bodies, which were further solubilized, refolded, and purified. The purified recombinant laccases were alkali-tolerant and thermostable, with pH optima at 7–8, temperature optima at 60–70 °C and low redox potential. For in silico studies, laccase protein models of B. pumilus DSKK1, Y. enterocolitica strain 7 and Y. enterocolitica strain 8081 were docked with commercial dyes. This is the first and foremost study where the stability of docked complexes of pathogenic and non-pathogenic microorganism has been explored via molecular dynamics (MD) simulations using Gromacs version 4.5.5 with the gromos96 43a force field. Finally, the in silico results were validated experimentally and it was found that purified laccases from B. pumilus DSKK1 and Y. enterocolitica strain 7 efficiently decolorized rose bengal (90.4%), malachite green (77.7%), and congo red (74.5%) dyes.
Показать больше [+] Меньше [-]Distribution, metabolism and metabolic disturbances of alpha-cypermethrin in embryo development, chick growth and adult hens Полный текст
2019
Liu, Xueke | Liu, Chang | Wang, Peng | Liang, Yiran | Zhan, Jing | Zhou, Zhiqiang | Liu, Donghui
Alpha-cypermethrin (Alpha-CP), an important pyrethroid pesticide, has been widely used for pest control in agriculture and parasite control in livestock farms. Thus, alpha-CP is easily exposed to wild birds and poultry, which may pose a potential risk to birds. Alpha-CP and its metabolites have been detected in many environmental samples, including poultry and wild birds. We studied the distribution and metabolism of alpha-CP and its metabolites in embryo development and newborn chick. The results showed that metabolites were the main residual forms of alpha-CP in different stages of life and might increase the exposure risk of bird and its offspring. Metabolomics investigation of newborn chick exhibited that the metabolic profiles of chicks were disturbed, especially lipid metabolism. The concentrations of cis-DCCA and trans-DCCA were high in the first and second weeks of chick growth, indicating that chicks have limited ability to further metabolize and excrete cis-DCCA and trans-DCCA during the early stages of chicks. Toxicokinetics of alpha-CP in adult hens showed that alpha-CP was rapidly metabolized to acid metabolites, which could be further metabolized and excreted. The results about metabolism of alpha-CP in different stages of chicken indicate that the ability of the embryo and early chick to metabolize alpha-CP and its metabolites was the weakest. Therefore, it is of important significance to focus on evaluating the ecological risk of cypermethrin on birds at different stages of life cycle.
Показать больше [+] Меньше [-]Bacterial shifts during in-situ mineralization bio-treatment to non-ferrous metal(loid) tailings Полный текст
2019
Liu, Jian-li | Yao, Jun | Duran, Robert | Mihucz, Victor G. | Hudson-Edwards, K. A. (Karen A.)
Nonferrous mine tailings have caused serious problems of co-contamination with metal(loid)s. It is still a global challenge to cost-effectively manage and mitigate the effect of the mining wastes. We conducted an in-situ bio-treatment of non-ferrous metal(loid) tailings using a microbial consortium of sulfate reducing bacteria (SRB). During the bio-treatment, the transformation of metal(loid)s (such as Cu, Fe, Mn, Pb, Sb, and Zn) into oxidizable and residual fractions in the subsurface tended to be higher than that observed in the surface. As well the mineral compositions changed becoming more complex, indicating that the sulfur reducing process of bio-treatment shaped the bio-transformation of metal(loid)s. The added SRB genera, especially Desulfotomaculum genus, colonized the tailings suggesting the coalescence of SRB consortia with indigenous communities of tailings. Such observation provides new insights for understanding the functional microbial community coalescence applied to bio-treatment. PICRUSt analysis revealed presence of genes involved in sulfate reduction, both assimilatory and dissimilatory. The potential for the utilization of both inorganic and organic sulfur compounds as S source, as well as the presence of sulfite oxidation genes indicated that SRB play an important role in the transformation of metal(loid)s. We advocate that the management of microorganisms involved in S-cycle is of paramount importance for the in situ bio-treatment of tailings, which provide new insights for the implementation of bio-treatments for mitigating the effect of tailings.
Показать больше [+] Меньше [-]Effects of oxidation degree on photo-transformation and the resulting toxicity of graphene oxide in aqueous environment Полный текст
2019
Graphene oxide (GO) has been demonstrated to be key component for diverse applications. However, their potential environmental reactivity, fate and risk have not been fully evaluated to date. In this study, we investigated the photochemical reactivity of four types of GO with different oxidation degrees in aqueous environment, and their related toxicity to two bacterial models Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was further compared. After UV-irradiation, a large amount of oxygen functional groups on GO were reduced and the electronic conjugations within GO were restored as indicated by UV–visible absorption spectra, X-ray photoelectron spectroscopy and Raman spectroscopy analysis. Moreover, the higher the oxidation degree of the pristine GO was, the more obvious of the photo-transformation changes were. In order to further reveal the photochemical reactivity mechanisms, the reactive oxygen species (ROS) generation of GO was monitored. The quantity of ROS including singlet oxygen (1O2), superoxide anions (O2·-), and hydroxyl radicals (·OH) increased with increasing oxidation degree of GO, which was in accordance with the previous characterization results. Scanning electron microscopy and cell growth analyses of E. coli and S. aureus showed that the photochemical transformation enhanced the toxicity of GO, which might be due to an increase in functional group density. The higher conductivity of the reduced graphene oxide (RGO) was responsible for its stronger toxicity than GO through membrane damage and oxidative stress to bacteria. This study revealed that the oxidation degrees play important roles in photochemical transformation and the resulting toxicity of GO, which is helpful for understanding the environmental behaviors and risks of GO in aquatic environments.
Показать больше [+] Меньше [-]The impacts of γ-Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants Полный текст
2019
Iron fertilizers are worthy to be studied due to alleviate the Fe deficiency. Different forms of iron oxide nanoparticles are selected to better understand possible particle applications as an Fe source for crop plants. In this study, we assessed the different effects of γ-Fe2O3 and Fe3O4 NPs on the physiology and fruit quality of muskmelon plants in a pot experiment for five weeks. Results showed that no increased iron content was found under NPs treatment in root, stem, leaf and fruit, except 400 mg/L Fe3O4 NPs had a higher iron content in muskmelon root. With the extension of NPs exposure, both γ-Fe2O3 and Fe3O4 NPs began to promote plant growth. In addition, γ-Fe2O3 and Fe3O4 NPs could increase chlorophyll content at a certain stage of exposure. Happily, 200 mg/L γ-Fe2O3 NPs and 100, 200 mg/L Fe3O4 NPs significantly increased fruit weight of muskmelon by 9.1%, 9.4% and 11.5%. It is noteworthy that both γ-Fe2O3 and Fe3O4 NPs caused positive effects on VC content, particularly 100 mg/L Fe3O4 NPs increased the VC content by 46.95%. To the best of our knowledge, little research has been done on the effect of nanoparticles on the whole physiological cycle and fruit quality of melon. The assessment of physiology and fruit quality of muskmelon plants in vitro upon γ-Fe2O3 and Fe3O4 NPs exposure could lay a foundation for NPs potential impact at every growth period of muskmelon plants.
Показать больше [+] Меньше [-]Personal exposure to PM2.5 constituents associated with gestational blood pressure and endothelial dysfunction Полный текст
2019
Xia, Bin | Zhou, Yuhan | Zhu, Qingyang | Zhao, Yingya | Wang, Ying | Ge, Wenzhen | Yang, Qing | Zhao, Yan | Wang, Pengpeng | Si, Jingyi | Luo, Ranran | Li, Jialin | Shi, Huijing | Zhang, Yunhui
Ambient fine particulate matter (PM2.5) pollution has been implicated in the development of hypertensive disorders of pregnancy. However, evidence on the effects of PM2.5-derived chemical constituents on gestational blood pressure (BP) is limited, and the potential mechanisms underlying the association remain unclear. In this study, we repeated three consecutive 72-h personal air sampling and BP measurements in 215 pregnant women for 590 visits during pregnancy. Individual PM2.5 exposure level was assessed by gravimetric method and 28 PM2.5 chemical constituents were analyzed by ED-XRF method. Plasma biomarkers of endothelial function and inflammation were measured using multiplexed immunoassays. Robust multiple linear regression models were used to estimate the associations among personal PM2.5 exposure and chemical constituents, BP changes (compared with pre-pregnancy BP) and plasma biomarkers. Mediation analyses were performed to evaluate underlying potential pathways. Result showed that exposure to PM2.5 was significantly associated with increases in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) in the early second trimester. Meanwhile, elevated concentration of lead (Pb) constituent in PM2.5 was significant associated with increases in DBP and MAP after adjusting for PM2.5 total mass. PM2.5 and Pb constituent also presented positive associations with plasma biomarkers of endothelial function (ET-1, E-selectin, ICAM-1) and inflammation (IL-1β, IL-6, TNFα) significantly. After multiple adjustment, elevated ET-1 and IL-6 were significantly correlated with increased gestational BP, and respectively mediated 1.24%–25.06% and 7.01%–10.69% of the increased BP due to PM2.5 and Pb constituent exposure. In conclusion, our results suggested that personal exposure to PM2.5 and Pb constituent were significantly associated with increased BP during pregnancy, and the early second trimester might be the sensitive window of PM2.5 exposure. The endothelial dysfunction and elevated inflammation partially mediated the effect of PM2.5 and Pb constituent on BP during pregnancy.
Показать больше [+] Меньше [-]Physico-chemical characterization and in vitro inflammatory and oxidative potency of atmospheric particles collected in Dakar city's (Senegal) Полный текст
2019
(Maurizio),
Exposure to atmospheric pollutants has been recognized as a major risk factor of respiratory and cardiovascular diseases. Fine particles (PM2.5) and a coarser fraction (PM>2.5) sampled at an urban site in Dakar (HLM), characterized by high road traffic emissions, were compared with particles sampled at a rural area, Toubab Dialaw located about 40 km from Dakar. The physicochemical characteristics of samples revealed that PMs differ for their physical (surface area) and chemical properties (in terms of CHN, metals, ions, paraffins, VOCs and PAHs) that were 65–75% higher in urban samples. Moreover the fine PMs contain higher amounts of anthropogenic related pollutants than the PM>2.5 one. These differences are sustained by the ratios reported for the analysed PAHs which suggest as predominant primary emission sources vehicle exhausts at urban site and biomass combustion at the rural site. The inflammatory response and the oxidative damages were evaluated in BEAS-2B cells by the quantification of 4 selected inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8) and of total carbonylated proteins and the oxidative DNA adduct 8-OHdG after 8 or 24 h exposure. In accordance with the different sources and different physical and chemical properties, the inflammatory response and the oxidative damages were found higher in bronchial cells exposed to urban PMs. These data confirm the importance, also for West African countries, to evaluate the correlation between PM physico-chemical properties and potential biological impacts.
Показать больше [+] Меньше [-]Di(n-butyl) phthalate exposure impairs meiotic competence and development of mouse oocyte Полный текст
2019
Li, Fei-Ping | Zhou, Jie-Long | Guo, Ai-Wei | Liu, Yu | Zhang, Fei | Xu, Bai-Hui | Liu, Rui | Wang, Ya-Long | Chen, Ming-Huang | Lin, Yan-Hong | He, Shu-Wen | Liao, Bao-Qiong | Fu, Xian-Pei | Wang, Hai Long
Di(n-butyl) phthalate (DBP) is extensively used in industrial applications as plasticizer and stabilizer and its presence in the environment may present health risks for human. Previous studies have demonstrated its mutagenic, teratogenic, and carcinogenic ability. However, its effect on mammalian oocyte maturation remains unknown. In this study, we examined the effect of DBP on oocyte maturation both in vitro and in vivo. Our results showed that DBP could significantly reduce mice oocyte germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) rates. In addition, oocyte cytoskeleton was damaged and cortical granule-free domains (CGFDs) were also disrupted. Finally, DBP induced early apoptosis of oocyte and granulosa cells (GCs). Collectively, these data demonstrate that DBP could reduce meiosis competence and mouse oocyte development.
Показать больше [+] Меньше [-]On the accuracy and potential of Google Maps location history data to characterize individual mobility for air pollution health studies Полный текст
2019
Yu, Xiaonan | Stuart, Amy L. | Liu, Yang | Ivey, Cesunica E. | Russell, Armistead G. | Kan, Haidong | Henneman, Lucas R.F. | Sarnat, Stefanie Ebelt | Hasan, Samiul | Sadmani, Anwar | Yang, Xuchao | Yu, Haofei
Appropriately characterizing spatiotemporal individual mobility is important in many research areas, including epidemiological studies focusing on air pollution. However, in many retrospective air pollution health studies, exposure to air pollution is typically estimated at the subjects’ residential addresses. Individual mobility is often neglected due to lack of data, and exposure misclassification errors are expected. In this study, we demonstrate the potential of using location history data collected from smartphones by the Google Maps application for characterizing historical individual mobility and exposure. Here, one subject carried a smartphone installed with Google Maps, and a reference GPS data logger which was configured to record location every 10 s, for a period of one week. The retrieved Google Maps Location History (GMLH) data were then compared with the GPS data to evaluate their effectiveness and accuracy of the GMLH data to capture individual mobility. We also conducted an online survey (n = 284) to assess the availability of GMLH data among smartphone users in the US. We found the GMLH data reasonably captured the spatial movement of the subject during the one-week time period at up to 200 m resolution. We were able to accurately estimate the time the subject spent in different microenvironments, as well as the time the subject spent driving during the week. The estimated time-weighted daily exposures to ambient particulate matter using GMLH and the GPS data logger were also similar (error less than 1.2%). Survey results showed that GMLH data may be available for 61% of the survey sample. Considering the popularity of smartphones and the Google Maps application, detailed historical location data are expected to be available for large portion of the population, and results from this study highlight the potential of these location history data to improve exposure estimation for retrospective epidemiological studies.
Показать больше [+] Меньше [-]