Уточнить поиск
Результаты 661-670 из 762
A multibiomarker approach using the polychaete Arenicola marina to assess oil-contaminated sediments
2009
Morales-Caselles, Carmen | Lewis, Ceri | Riba, Inmaculada | DelValls, T Ángel | Galloway, Tamara
Background, aim and scope Marine and coastal sediments can accumulate substantial concentrations of metals and hydrocarbons, yet the consequences of this contamination for exposed biota in situ can be difficult to establish. Here, we examine the hypothesis that exposure to contaminated sediments can lead to detrimental effects in sediment-dwelling species. The combination of chemical and biological assessment allows the identification of the impact of chemical contamination, and their use as assessment tools is becoming increasingly important. Materials and methods The study was applied to marine sediments from the Bay of Algeciras (S Spain) impacted by multiple, low-level contaminant inputs, and the Galician Coast (NW Spain), historically impacted by an oil spill (Prestige 2002), with two reference sites selected in UK and Spain. The common lugworm Arenicola marina was exposed in the laboratory for 14 days to the marine sediments, and a suite of biomarkers of sublethal toxicity was combined with analytical chemistry to test for relationships between sediment contamination and effect. Results Moderate to strong correlations between organics, metals, and biological responses were observed, with DNA damage as measured using the Comet assay forming the largest contribution toward the observed differences (p < 0.05). The responses of worms from sites experiencing different contamination loads were clearly distinguishable. Discussion We show how a combination of multibiomarkers with analytical chemistry can be used to investigate the toxicity of marine sediments, enabling the differentiation of sites showing different types of contamination. There are clear relationships in sublethal assays that can be related to the putative mode of toxicity of the contaminants. Conclusions The use of A. marina in this way provides a sensitive, holistic approach to sediment toxicity assessment, enabling comparisons between oil-polluted sites to be quantified. Recommendations and perspectives These tools provide a relatively simple, rapid, and economic way to test the environmental status of oil-contaminated sediment.
Показать больше [+] Меньше [-]Acute toxicity of 353-nonylphenol and its metabolites for zebrafish embryos
2009
Kammann, Ulrike | Vobach, Michael | Wosniok, Werner | Schäffer, Andreas | Telscher, Andreas
Background, aim and scope Nonylphenol (NP) can be detected in the aquatic environment all over the world. It is applied as a technical mixture of isomers of which 353-NP is the most relevant both in terms of abundance (about 20% of total mass) and endocrine potential. 353-NP is metabolised in sewage sludge. The aims of the present study were to determine and to compare the acute toxicity of t-NP, 353-NP and its metabolites as well as to discuss if the toxicity of 353-NP changes during degradation. Materials and methods 353-NP and two of its metabolites were synthesised. The zebrafish embryo test was performed according to standard protocols. Several lethal and non-lethal endpoints during embryonal development were reported. NOEL, LOEL and EC₅₀ were calculated. Results All tested compounds caused lethal as well as non-lethal malformations during embryo development. 353-NP showed a higher toxicity (EC₅₀ for lethal endpoints 6.7 mg/L) compared to its metabolites 4-(3.5-dimethyl-3-heptyl)-2-nitrophenol (EC₅₀ 13.3 mg/L) and 4-(3,5-dimethyl-3-heptyl)-2-bromophenol (EC₅₀ 27.1 mg/L). Discussion In surface water, concentrations of NP are far below the NOEC identified by the zebrafish embryo test. However, in soils and sewage sludge, concentrations may reach or even exceed these concentrations. Therefore, sludge-treated sites close to surface waters should be analysed for NP and its metabolites in order to detect an unduly high contamination due to runoff events. Conclusions The results of the present study point out that the toxicity of 353-NP probably declines during metabolisation in water, sediment and soil, but does not vanish since the major metabolites exhibit a clear toxic potential for zebrafish embryos. Recommendations and perspectives Metabolites of environmental pollutants should be included in the ecotoxicological test strategy for a proper risk assessment.
Показать больше [+] Меньше [-]Seasonal variation of HCH isomers in open soil and plant-rhizospheric soil system of a contaminated environment
2009
Abhilash, P. C. | Singh, Nandita
Background, aim, and scope Lindane, technically 1, 2, 3, 4, 5, 6-hexachlorocyclohexane (γ- HCH), is the most commonly detected organochlorine pesticide from diverse environmental compartments. Currently, India is the largest consumer and producer of lindane in the world. The production of lindane results in the generation of large quantities of waste HCH isomers (mainly α-, β- and δ-). All these isomers are toxic and have a long-range environmental transport potential. The aim of this study was to monitor the seasonal variation of HCH isomers in an open soil-plant-rhizospheric soil system of a contaminated industrial area. For this, selected plant species and their rhizospheric soil (soil samples collected at a depth range of 0-45 cm near to the root system) and open soil samples (soil samples collected (0-30 cm depth) from 1-1.5 m away from the plant root system) were collected for 2 years (two summer seasons and two winter seasons). Materials and methods Seven plant species along with their rhizospheric soil and open soil samples were collected seasonally from different parts of the industry. Plant samples were separated into root, leaf and stem. HCH isomers in plant and soil samples were extracted by matrix solid-phase dispersion extraction (MSPD) and Soxhlet extraction, respectively, followed by GC-ECD. The seasonal difference in occurrence of HCH isomers in plant samples with their respective soil-system was studied by multivariate statistical approaches. Results The mean concentration of total HCH in plant samples, open soil and rhizospheric soil samples were found in the range of 14.12 to 59.29 mg kg⁻¹; 38.64 to 104.18 mg kg⁻¹ and 8.38 to 26.05 mg kg⁻¹, respectively. Cluster grouping reveals that S. torvum and W. somnifera can accumulate more HCH than other studied species. Discussion There was a marked seasonal difference in the occurrence of HCH isomers in plant samples (p < 0.05) and open soil samples (p < 0.01). Comparatively higher levels of HCH isomers were detected from plant samples during summer, while higher levels of HCH isomers were detected from soil samples during the winter season. There was no significant difference in seasonal variation of HCH isomers in rhizospheric soil samples; however, total HCH in rhizospheric soil samples were 4 to 5-fold lower than the open soil samples. The total concentration of HCH isomers in roots is linearly related to their rhizospheric HCH level. Conclusions HCH isomers were detected in open soil, plants and rhizospheric soil samples. Monitoring studies clearly revealed that the above-mentioned industrial area is contaminated with all major isomers of HCH. Occurrence of all these isomers in the study area point out the lack of sustainable management practices of this industry for protecting the area from hazardous waste. The analytical results confirmed that accumulation depends upon the plant species, soil and climatic conditions. Recommendations and perspectives Recently, α-, β- and γ-HCH have been nominated by the POPs Reviewing Committee for inclusion into the Stockholm Convention to address the HCH contamination on a global level. Therefore, there is an urgent need to stop the production of lindane and remediate contaminated soil sites. Based on the monitoring studies, the promising species like W. somnifera and S. torvum may be selected for the on-site phytoremediation of HCH-contaminated soil. The mismanagement of HCH residues from the organochlorine industry and their contemporary relevance often after decades of their deposition is one key example demonstrating the necessity to evaluate the waste deposits of the respective organochlorine productions and need for a strict waste management, and the necessity of an integrated pollution prevention and control strategy for the whole organochlorine industry including also the developing countries.
Показать больше [+] Меньше [-]Climate and land-use changes affecting river sediment and brown trout in alpine countries--a review
2009
Scheurer, Karin | Alewell, Christine | Bänninger, Dominik | Burkhardt-Holm, Patricia
Background, aim, and scope Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated. Approach We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries. Have climate change and land-use change increased erosion and sediment loads in rivers? Do we have indications of an increase in riverbed clogging? Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging? Results Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show that suspended sediments affect the health and behaviour of fish when available in high amounts. Point measurements in large rivers indicate no common lethal threat and suspended sediment is rarely measured continuously in small rivers. However, effects on fish can be expected under environmentally relevant conditions. River bed clogging impairs the reproductive performance of gravel-spawning fish. Discussion Overall, higher erosion and increased levels of fine sediment going into rivers are expected in future. Additionally, sediment loads in rivers are suspected to have considerably impaired gravel bed structure and brown trout spawning is impeded. Timing of discharge is put forward and is now more likely to affect brown trout spawning than in previous decades. Conclusions Reports on riverbed clogging from changes in erosion and fine sediment deposition patterns, caused by climate change and land-use change are rare. This review identifies both a risk of increases in climate erosive forces and fine sediment loads in rivers of alpine countries. Increased river discharge and sediment loads in winter and early spring could be especially harmful for brown trout reproduction and development of young life stages. Recently published studies indicate a decline in trout reproduction from riverbed clogging in many rivers in lowlands and alpine regions. However, the multitude of factors in natural complex ecosystems makes it difficult to address a single causative factor. Recommendations and perspectives Further investigations into the consequences of climate change and land-use change on river systems are needed. Small rivers, of high importance for the recruitment of gravel-spawning fish, are often neglected. Studies on river bed clogging are rare and the few existing studies are not comparable. Thus, there is a strong need for the development of methods to assess sediment input and river bed clogging. As well, studies on the effects to fish from suspended sediments and consequences of gravel beds clogging under natural conditions are urgently needed.
Показать больше [+] Меньше [-]Metabolism of acetaminophen (paracetamol) in plants--two independent pathways result in the formation of a glutathione and a glucose conjugate
2009
Huber, Christian | Bartha, Bernadett | Harpaintner, Rudolf | Schröder, Peter
Background, aim, and scope Pharmaceuticals and their metabolites are detected in the aquatic environment and our drinking water supplies. The need for high quality drinking water is one of the most challenging problems of our times, but still only little knowledge exists on the impact of these compounds on ecosystems, animals, and man. Biological waste water treatment in constructed wetlands is an effective and low-cost alternative, especially for the treatment of non-industrial, municipal waste water. In this situation, plants get in contact with pharmaceutical compounds and have to tackle their detoxification. The mechanisms for the detoxification of xenobiotics in plants are closely related to the mammalian system. An activation reaction (phase I) is followed by a conjugation (phase II) with hydrophilic molecules like glutathione or glucose. Phase III reactions can be summarized as storage, degradation, and transport of the xenobiotic conjugate. Until now, there is no information available on the fate of pharmaceuticals in plants. In this study, we want to investigate the fate and metabolism of N-acetyl-4-aminophenol (paracetamol) in plant tissues using the cell culture of Armoracia rusticana L. as a model system. Materials and methods A hairy root culture of A. rusticana was treated with acetaminophen in a liquid culture. The formation and identification of metabolites over time were analyzed using HPLC-DAD and LC-MSn techniques. Results With LC-MS technique, we were able to detect paracetamol and identify three of its metabolites in root cells of A. rusticana. Six hours after incubation with 1 mM of acetaminophen, the distribution of acetaminophen and related metabolites in the cells resulted in 18% paracetamol, 64% paracetamol-glucoside, 17% paracetamol glutathione, and 1% of the corresponding cysteine conjugate. Discussion The formation of two independently formed metabolites in plant root cells again revealed strong similarities between plant and mammalian detoxification systems. The detoxification mechanism of glucuronization in mammals is mirrored by glucosidation of xenobiotics in plants. Furthermore, in both systems, a glutathione conjugate is formed. Due to the existence of P450 enzymes in plants, the formation of the highly reactive NAPQI intermediate is possible. Conclusions In this study, we introduce the hairy root cell culture of A. rusticana L. as a suitable model system to study the fate of acetaminophen in plant tissues. Our first results point to the direction of plants being able to take up and detoxify the model substrate paracetamol. These first findings underline the great potential of using plants for waste water treatments in constructed wetlands. Recommendations and perspectives This very first study on the detoxification of a widely used antipyretic agent in plant tissues again shows the flexibility of plant detoxification systems and their potential in waste water treatment facilities. This study covers only the very first steps of acetaminophen detoxification in plants; still, there is no data on long-term exposure as well as the possible impact of pharmaceuticals on the plant health and stress defense. Long-term experiments need to be performed to follow the fate of acetaminophen in root and leaf cells in a whole plant system, and to evaluate possible usage of plants for the remediation of acetaminophen from waste water.
Показать больше [+] Меньше [-]The astysphere and urban geochemistry--a new approach to integrate urban systems into the geoscientific concept of spheres and a challenging concept of modern geochemistry supporting the sustainable development of planet earth
2009
Norra, Stefan
Background, aim, and scope In 1875, the geoscientist Walter Suess introduced several spheres, such as the lithosphere and the atmosphere to promote a comprehensive understanding of the system earth. Since then, this idea became the dominating concept for the understanding of the distribution of chemical elements in the system earth. Meanwhile, due to the importance of human beings on global element fluxes, the term anthroposphere was introduced. Nevertheless, in face of the ongoing urbanization of the earth, this concept is not any more adequate enough to develop a comprehensive understanding of global element fluxes in and between solid, liquid, and gaseous phases. This article discusses a new concept integrating urbanization into the geoscientific concept of spheres. Main features No geological exogenic force has altered the earth's surface during the last centuries in such an extent as human activity. Humans have altered the morphology and element balances of the earth by establishing agrosystems first and urban systems later. Currently, urban systems happen to become the main regulators for fluxes of many elements on a global scale due to ongoing industrial and economic development and a growing number of inhabitants. Additionally, urban systems are constantly expanding and cover more and more former natural and agricultural areas. For nature, urban systems are new phenomena, which never existed in previous geological eras. The process of the globe's urbanization concurrently is active with the global climate change. In fact, urban systems are a major emitter for climate active gases. Thus, beside the global changes in economy and society, urbanization is an important factor within the global change of nature as is already accepted for climate, ecosystems, and biodiversity. Results Due to the fact that urbanization has become a global process shaping the earth and that the urban systems are globally cross-linked among each other, a new geoscientific sphere has to be introduced: the astysphere. This sphere comprises the parts of the earth influenced by urban systems. Accepting urbanization as global ongoing process forming the astysphere comprehensively copes with the growing importance of urbanization on the creation of present geologic formations. Discussion Anthropogenic activities occur mainly in rural and urban environments. For long lasting periods of human history, human activities mainly were focused on hunting and agriculture, but since industrialization, urbanized areas became increasingly important for the material and energy fluxes of earth. Thus, it seems appropriate to classify the anthroposphere into an agriculturally and an urban-dominated sphere, which are the agrosphere (Krishna 2003) and the astysphere (introduced by Norra 2007). Conclusions We have to realize that urban systems are deposits, consumers, and transformers of resources interacting among each other and forming a network around the globe. Since the future of human mankind depends on the sustainable use of available resources, only a global and holistic view of the cross-linked urban systems forming together the astysphere provide the necessary geoscientific background understanding for global urban material and energy fluxes. If we want to ensure worth-living conditions for future generations of mankind, we have to develop global models of the future needs for resources by the global metasystem of urban systems, called astysphere. Perspectives The final vision for geoscientific research on the astysphere must be to design models describing the global process of urbanization of the earth and the development of the astysphere with respect to fluxes of materials, elements, and energy as well as with respect to the forming of the earth's face. Besides that, just from the viewpoint of fundamental research, the geoscientific concept of spheres has to be complemented by the astysphere if this concept shall fully represent the system earth.
Показать больше [+] Меньше [-]Ultraviolet light-emitting diodes in water disinfection
2009
Vilhunen, Sari | Särkkä, Heikki | Sillanpää, Mika
Background, aim, and scope The novel system of ultraviolet light-emitting diodes (UV LEDs) was studied in water disinfection. Conventional UV lamps, like mercury vapor lamp, consume much energy and are considered to be problem waste after use. UV LEDs are energy efficient and free of toxicants. This study showed the suitability of LEDs in disinfection and provided information of the effect of two emitted wavelengths and different test mediums to Escherichia coli destruction. Materials and methods Common laboratory strain of E. coli (K12) was used and the effects of two emitted wavelengths (269 and 276 nm) were investigated with two photolytic batch reactors both including ten LEDs. The effects of test medium were examined with ultrapure water, nutrient and water, and nutrient and water with humic acids. Results Efficiency of reactors was almost the same even though the one emitting higher wavelength had doubled optical power compared to the other. Therefore, the effect of wavelength was evident and the radiation emitted at 269 nm was more powerful. Also, the impact of background was studied and noticed to have only slight deteriorating effect. In the 5-min experiment, the bacterial reduction of three to four log colony-forming units (CFU) per cubic centimeter was achieved, in all cases. Discussion When turbidity of the test medium was greater, part of the UV radiation was spent on the absorption and reactions with extra substances on liquid. Humic acids can also coat the bacteria reducing the sensitivity of the cells to UV light. The lower wavelength was distinctly more efficient when the optical power is considered, even though the difference of wavelengths was small. The reason presumably is the greater absorption of DNA causing more efficient bacterial breakage. Conclusions UV LEDs were efficient in E. coli destruction, even if LEDs were considered to have rather low optical power. The effect of wavelengths was noticeable but the test medium did not have much impact. Recommendations and perspectives This study found UV LEDs to be an optimal method for bacterial disinfection. The emitted wavelength was found to be an essential factor when using LEDs; thus, care should be taken in selecting the proper LED for maximum disinfection.
Показать больше [+] Меньше [-]Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants
2009
Schröder, Peter | Lyubenova, Lyudmila | Huber, Christian
Background, aim and scope Mixed pollution with trace elements and organic industrial compounds is characteristic for many spill areas and dumping sites. The danger for the environment and human health from such sites is large, and sustainable remediation strategies are urgently needed. Phytoremediation seems to be a cheap and environmentally sound option for the removal of unwanted compounds, and the hyperaccumulation of trace elements and toxic metals is seemingly independent from the metabolism of organic xenobiotics. However, stress reactions, ROS formation and depletion of antioxidants will also cause alterations in xenobiotic detoxification. Here, we investigate the capability of plants to detoxify chlorophenols via glutathione conjugation in a mixed pollution situation. Materials and methods Typha latifolia and Phragmites australis plants for the present study were grown under greenhouse conditions in experimental ponds. A Picea abies L. suspension culture was grown in a growth chamber. Cadmium sulphate, sodium arsenate and lead chloride in concentrations from 10 to 500 µM were administered to plants. Enzymes of interest for the present study were: glutathione transferase (GST), glutathione reductase, ascorbate peroxidase and peroxidase. Measurements were performed according to published methods. GST spectrophotometric assays included the model substrates CDNB, DCNB, NBC, NBoC and the herbicide Fluorodifen. Results Heavy metals lead to visible stress symptoms in higher plants. Besides one long-term experiment of 72 days duration, the present study shows time and concentration-dependent plant alterations already after 24 and 72 h Cd incubation. P. abies spruce cell cultures react to CdSO₄ and Na₂HAsO₄ with an oxidative burst, similar to that observed after pathogen attack or elicitor treatment. Cd application resulted in a reduction in GSH and GSSG contents. When a heavy metal mixture containing Na₂HAsO₄, CdSO₄ and PbCl₂ was applied to cultures, both GSH and GSSG levels declined. Incubation with 80 µM arsenic alone doubled GSSG values. Based on these results, further experiments were performed in whole plants of cattail and reed, using cadmium in Phragmites and cadmium and arsenic in Typha as inducers of stress. In Phragmites australis, GST activities for CDNB and DCNB were significantly reduced after short-term Cd exposure (24 h). In the same samples, all antioxidant enzymes increased with rising heavy metal concentrations. Typha latifolia rhizome incubation with Cd and As leads to an increase in glutathione reductase and total peroxidase activity and to a decrease in ascorbate peroxidase activity. Measurements of the same enzymes in leaves of the same plants show increased GR activities, but no change in peroxidases. GST conjugation for CDNB was depressed in both cattail rhizomes and leaves treated with Cd. After As application increased, DCNB enzyme activities were detected. Discussion T. latifolia and P. australis are powerful species for phytoremediation because they penetrate a large volume of soil with their extensive root and rhizome systems. However, an effective remediation process will depend on active detoxifying enzymes, and also on the availability of conjugation partners, e.g. glutathione and its analogues. Species-specific differences seem to exist between the regulations of primary defence enzymes like SOD, catalase, peroxidases, whereas others prefer to induce the glutathione-dependent enzymes. As long as the pollutant mix encountered is simple and dominated by heavy metals, plant defence might be sufficient. When pollution plumes contain heavy metals and organic xenobiotics at the same time, this means that part of the detoxification capacity, at least of glutathione-conjugating reactions, is withdrawn from the heavy metal front to serve other purposes. In fact, glutathione S-transferases show strong reactions in stressed plants or in the presence of heavy metals. The spruce cell culture was a perfect model system to study short-term responses on heavy metal impact. Overall, and on the canopy level, this inhibitory effect might result in a lower detoxification capacity for organic pollutants and thus interfere with phytoremediation. Conclusions We present evidence that pollution with heavy metals will interfere with both the oxidative stress defence in plants, and with their ability to conjugate organic xenobiotics. Despite plant-species-dependent differences, the general reactions seem to include oxidative stress and an induction of antioxidative enzymes. Several processes seem to depend on direct binding of heavy metals to enzyme proteins, but effects on transcription are also observed. Induction of xenobiotic metabolism will be obtained at high heavy metal concentrations, when plant stress is elevated. Recommendations and perspectives Plants for phytoremediation of complex pollution mixtures have to be selected according to three major issues: uptake/accumulation capacity, antioxidative stress management, and detoxification/binding properties for both the trace elements and the organic xenobiotics. By way of this, it might be possible to speed up the desired remediation process and/or to obtain the desired end products. And, amongst the end products, emphasis should be laid on industrial building materials, biomass for insulation or biogas production, but not for feed and fodder. Each of these attempts would increase the chances for publicly accepted use of phytoremediation and help to cure the environment.
Показать больше [+] Меньше [-]The role of cytochromes P450 and peroxidases in the detoxification of sulphonated anthraquinones by rhubarb and common sorrel plants cultivated under hydroponic conditions
2009
Page, Valérie | Schwitzguébel, Jean-Paul
Background, aim and scope Sulphonated anthraquinones are precursors of many synthetic dyes and pigments, recalcitrant to biodegradation and thus not eliminated by classical wastewater treatments. In the development of a phytotreatment to remove sulphonated aromatic compounds from dye and textile industrial effluents, it has been shown that rhubarb (Rheum rabarbarum) and common sorrel (Rumex acetosa) are the most efficient plants. Both species, producing natural anthraquinones, not only accumulate, but also transform these xenobiotic chemicals. Even if the precise biochemical mechanisms involved in the detoxification of sulphonated anthraquinones are not yet understood, they probably have cross talks with secondary metabolism, redox processes and plant energy metabolism. The aim of the present study was to investigate the possible roles of cytochrome P450 monooxygenases and peroxidases in the detoxification of several sulphonated anthraquinones. Materials and methods Both plant species were cultivated in a greenhouse under hydroponic conditions, with or without sulphonated anthraquinones. Plants were harvested at different times and either microsomal or cytosolic fractions were prepared. The monooxygenase activity of cytochromes P450 toward several sulphonated anthraquinones was tested using a new method based on the fluorimetric detection of oxygen consumed during cytochromes P450-catalysed reactions. The activity of cytosolic peroxidases was measured by spectrophotometry, using guaiacol as a substrate. Results A significant activity of cytochromes P450 was detected in rhubarb leaves, while no (rhizome) or low (petioles and roots) activity was found in other parts of the plants. An induction of this enzyme was observed at the beginning of the exposition to sulphonated anthraquinones. The results also indicated that cytochromes P450 were able to accept as substrate the five sulphonated anthraquinones, with a higher activity toward AQ-2,6-SS (0.706 nkat/mg protein) and AQ-2-S (0.720 nkat/mg protein). An activity of the cytochromes P450 was also found in the leaves of common sorrel (1.212 nkat/mg protein (AQ-2,6-SS)), but no induction of the activity occurred after the exposition to the pollutant. The activity of peroxidases increased when rhubarb was cultivated in the presence of the five sulphonated anthraquinones (0.857 nkat/mg protein). Peroxidase activity was also detected in the leaves of the common sorrel (0.055 nkat/mg protein), but in this plant, no significant difference was found between plants cultivated with and without sulphonated anthraquinones. Discussion Results indicated that the activity of cytochromes P450 and peroxidases increased in rhubarb in the presence of sulphonated anthraquinones and were involved in their detoxification mechanisms. Conclusions These results suggest the existence in rhubarb and common sorrel of specific mechanisms involved in the metabolism of sulphonated anthraquinones. Further investigation should be performed to find the next steps of this detoxification pathway. Recommendations and perspectives Besides these promising results for the phytotreatment of sulphonated anthraquinones, it will be of high interest to develop and test, at small scale, an experimental wastewater treatment system to determine its efficiency. On the other hand, these results reinforce the idea that natural biodiversity should be better studied to use the most appropriate species for the phytotreatment of a specific pollutant.
Показать больше [+] Меньше [-]Effects of public health interventions on industrial emissions and ambient air in Cartagena, Spain
2009
Cirera, Lluís | Rodríguez, Miguel | Giménez, J (Joaquín) | Jiménez, Enrique | Saez, Marc | Guillén, José-Jesús | Medrano García de Quevedo, José | Martínez-Victoria, María-Aurelia | Ballester, Ferran | Moreno-Grau, Stella | Navarro, Carmen
Background, aim, and scope Ten years of public health interventions on industrial emissions to clean air were monitored for the Mediterranean city of Cartagena. During the 1960s, a number of large chemical and non-ferrous metallurgical factories were established that significantly deteriorated the city's air quality. By the 1970s, the average annual air concentration of sulfur dioxide (SO₂) ranged from 200 to 300 μg/m³ (standard conditions units). In 1979, the Spanish government implemented an industrial intervention plan to improve the performance of factories and industrial air pollution surveillance. Unplanned urban development led to residential housing being located adjacent to three major factories. Factory A produced lead, factory B processed zinc from ore concentrates, and factory C produced sulfuric acid and phosphates. This, in combination with the particular abrupt topography and frequent atmospheric thermal inversions, resulted in the worsening of air quality and heightening concern for public health. In 1990, the City Council authorized the immediate intervention at these factories to reduce or shut down production if ambient levels of SO₂ or total suspended particles (TSP) exceeded a time-emission threshold in pre-established meteorological contexts. The aim of this research was to assess the appropriateness and effectiveness of the intervention plan implemented from 1992 to 2001 to abate industrial air pollution. Materials and methods The maximum daily 1-h ambient air level of SO₂, NO₂, and TSP pollutants was selected from one of the three urban automatic stations, designed to monitor ambient air quality around industrial emissions sources. The day on which an intervention took place to reduce and/or interrupt industrial production by factory and pollutant was defined as a control day, and the day after an intervention as a post-control day. To assess the short-term intervention effect on air quality, an ecological time series design was applied, using regression analysis in generalized additive models, focusing on day-to-day variations of ambient air pollutants levels. Two indicators were estimated: (a) appropriateness, the ratio between mean levels of the pollutant for control days versus the other days, and (b) effectiveness, the ratio between mean levels of the pollutant for post-control days versus the other days. Ratios in regression analyses were adjusted for trend, seasonality, temperature, humidity and atmospheric pressure, calendar day, and special events as well as the other pollutants. Results A total of 702 control days were made on the factories' industrial production during the 10-year period. Fifteen reductions and five shutdown control days took place at factory A for ambient air SO₂. At factory B, more controls were carried out for the SO₂ pollutant in the years 1992-1993 and 1997. At factory C, the control days for SO₂ decreased from 59 reductions and 14 shutdowns to a minimum from 1995 onwards, whereas the controls on TSP were more frequent, reaching a maximum of 99 reductions and 47 shutdowns in the last year. SO₂ ambient air mean levels ranged from 456 to 699 μg/m³ among factories on reduction control days and between 624 and 1,010 μg/m³ on shutdown days. The TSP ambient air mean levels were 428 and 506 μg/m³ on reduction and shutdown days, respectively. For all types of control days and factories, a mean ratio of 104% (95% confidence interval [CI] 88 to 121) in SO₂ levels was obtained and a mean ratio of 67% (95% CI 59 to 75) in TSP levels. Post-control days at all factories showed a mean ratio of -16% (95% CI -7 to -24) in SO₂ levels and a mean ratio of -13% (95% CI -7 to -19) in TSP levels. Discussion Interventions on industrial production based on the urban SO₂ and TSP ambient air levels were justified by the high concentrations detected. The best assessment of the interventions' effectiveness would have been to utilize the ambient air pollutant concentration readings from the entire time of the production shutdowns or reductions; however, the daily hourly maximum turned out to be a useful indicator because of meteorological factors influencing the diurnal concentration profile. A substantial number of interventions were carried out from 1 to 3 am, when vehicular traffic was minimum. On the other hand, atmospheric stability undergoes diurnal cycling in the autumn-winter period due to thermal inversion, which reaches maximum levels around daybreak. Therefore, this increases the ambient air levels and justified the interventions carried out at daybreak in spite of the traffic influence. Conclusions All the interventions for SO₂ and TSP were carried out when the measured ambient air levels of pollutants were exceeded, which shows the appropriateness of the intervention program. This excess was greater when intervening on SO₂ than on the TSP levels. For both ambient air levels of SO₂ and TSP, significant drops in air pollution were achieved from all three factories following activity reductions. The production shutdown controls were very effective, because they returned excess levels, higher than in the reduction controls, to everyday mean values. Recommendations and perspectives The Cartagena City observational system of intermittent control has proven to effectively reduce industrial emissions' impact on ambient air quality. This experienced model approach could serve well in highly polluted industrial settings. From a public health perspective, studies are needed to assess that the industrial interventions to control air pollution were related to healthier human populations. Legislation was needed to allow the public administration to take direct actions upon the polluting industries.
Показать больше [+] Меньше [-]