Уточнить поиск
Результаты 671-680 из 6,548
Effects of the leaf functional traits of coniferous and broadleaved trees in subtropical monsoon regions on PM2.5 dry deposition velocities Полный текст
2020
Zhang, Xuyi | Lyu, Junyao | Han, Yujie | Sun, Ningxiao | Sun, Wen | Li, Jinman | Liu, Chunjiang | Yin, Shan
Plants can intercept airborne particulate matter through deposition. Different types of plants exhibit different functional leaf traits, which can affect the dry deposition velocity (Vd). However, the most crucial leaf traits of coniferous and broadleaved trees remain unidentified. In this study, we selected 18 typical plants from the subtropical monsoon regions, where PM₂.₅ (fine particulate matter with a diameter of ≤2.5 μm) concentrations are relatively high, and classified them into coniferous and broadleaved categories. Subsequently, we analyzed the relationships between Vd and leaf surface free energy (SFE), single leaf area (LAₛ), surface roughness (SR), specific leaf area (SLA), epicuticular wax content (EWC), and width-to-length ratio (W/L). The results indicated that most coniferous trees exhibited a high Vd. The correlation analysis revealed that SFE, SR, LAₛ, and W/L were the key factors that affected the Vd of all the tested species. SFE and SLA had the strongest influence on the Vd of broadleaved trees, whereas LAₛ and SLA had the strongest effect on that of coniferous trees. Most coniferous trees had a high SLA, which can reduce water loss and hinder particle deposition. However, the stiff leaves of coniferous trees fluttered less, resulting in a larger leaf area that enhanced the capture efficiency. The leaf structure of broadleaved trees is more flexible, resulting in erratic flutter, which may impede deposition and lead to high resuspension. Coniferous and broadleaved trees may have different dominant leaf traits that affect particle deposition.
Показать больше [+] Меньше [-]CircRNA104250 and lncRNAuc001.dgp.1 promote the PM2.5-induced inflammatory response by co-targeting miR-3607-5p in BEAS-2B cells Полный текст
2020
Li, Xin | Jia, Yangyang | Nan, Aruo | Zhang, Nan | Zhou, Hanyu | Chen, Lijian | Pan, Xiujiao | Qiu, Miaoyun | Zhu, Jialu | Zhang, Han | Ling, Yihui | Jiang, Yiguo
Long-term exposure to particulate matter 2.5 (PM₂.₅) is closely related to the occurrence and development of airway inflammation. Exploration of the role of PM₂.₅ in inflammation is the first step towards clarifying the harmful effects of particulate pollution. However, the molecular mechanisms underlying PM₂.₅-induced airway inflammation are yet to be fully established. In this study, we focused on the specific roles of non-coding RNAs (ncRNAs) in PM₂.₅-induced airway inflammation. In a human bronchial epithelial cell line, BEAS-2B, PM₂.₅ at a concentration of 75 μg/mL induced the inflammatory response. Microarray and quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed significant upregulation of circRNA104250 and lncRNAuc001.dgp.1 during the PM₂.₅-induced inflammatory response in this cell line. Data from functional analyses further showed that both molecules promote an inflammatory response. CircRNA104250 and lncRNAuc001.dgp.1 target miR-3607-5p and affect expression of interleukin 1 receptor 1 (IL1R1), which influences the nuclear factor κB (NF-κB) signaling pathway. In summary, we have uncovered an underlying mechanism of airway inflammation by PM₂.₅ involving regulation of ncRNA for the first time, which provides further insights into the toxicological effects of PM₂.₅.
Показать больше [+] Меньше [-]Sustainable utilization of biowaste compost for renewable energy and soil amendments Полный текст
2020
Chia, Wen Yi | Chew, Kit Wayne | Le, Cheng Foh | Lam, Su Shiung | Chee, Chelsea Siew Chyi | Ooi, Mae See Luan | Show, Pau Loke
Acceleration of urbanization and industrialization has resulted in the drastic rise of waste generation with majority of them being biowaste. This constitutes a global challenge since conventional waste management methods (i.e., landfills) present environmental issues including greenhouse gases emissions, leachate formation and toxins release. A sustainable and effective approach to treat biowaste is through composting. Various aspects of composting such as compost quality, composting systems and compost pelletization are summarized in this paper. Common application of compost as fertilizer or soil amendment is presented with focus on the low adoption level of organic waste compost in reality. Rarely known, compost which is easily combustible can be utilized to generate electricity. With the analysis on critical approaches, this review aims to provide a comprehensive study on energy content of compost pellets, which has never been reviewed before. Environmental impacts and future prospects are also highlighted to provide further insights on application of this technology to close the loop of circular bioeconomy.
Показать больше [+] Меньше [-]Preparation of a silicon-iron amendment from acid-extracted copper tailings for remediating multi-metal-contaminated soils Полный текст
2020
Mu, Jing | Hu, Zhengyi | Huang, Lijuan | Xie, Zijian | Holm, Peter E.
Industrial by-products provide materials for remediation measures. In this study, a silicon-iron amendment was prepared from residue originating from acid-extracted copper (Cu) tailings based on thermal activation at temperatures ranging from 550 °C to 1150 °C for 30 min with the use of additives (CaO, Na₂CO₃, NaOH). The remediation performance of the amendment was evaluated through soil incubation and greenhouse pot experiments with vetiver (Vetiveria zizanioides). The results showed that the highest levels of soluble Si (6.11% of the total Si) and Fe (2.3% of the total Fe) in the amendment were achieved with thermal activation at 1150 °C for 30 min using an optimal ratio between residue and additives (residue: CaO: Na₂CO₃: NaOH = 1: 0.4: 0.4: 0.2). Heavy metal release indicated that the amendment could be safely used for soil remediation. The incubation experiments showed that the DTPA-extractable Cd, Cr and Pb in contaminated soils decreased with increasing amendment rate, which was not observed for As. The amendment-induced decrease in the Cd, Cr and Pb availability in contaminated soils could be explained by pH-change induced immobilization, Fe-induced chemisorption, Si-induced co-precipitation, and Ca-induced ion exchange. Correlation analysis suggested that there were significant negative correlations between DTPA-extractable Cd, Cr and Pb and the pH, Fe, Si, and Ca in soil pore water and soil. The most suitable amendment rate was determined to be 1% by balancing the efficacy and wise utilization of the amendment. The pot experiment demonstrated that the amendment promoted the vetiver growth and stimulated the accumulation of Cd and Cr in the roots. The amendment was proved to be promising for the phytostabilization of Cd, Cr and Pb in contaminated soils. Further investigations are required to determine whether the amendment is a tool for the long-term remediation of multi-metal-contaminated soils at the field scale.
Показать больше [+] Меньше [-]Differential responses of two cyanobacterial species to R-metalaxyl toxicity: Growth, photosynthesis and antioxidant analyses Полный текст
2020
Hamed, Seham M. | Hassan, Sherif H. | Selim, Samy | Wadaan, Mohammed A.M. | Mohany, Mohamed | Hozzein, Wael N. | AbdElgawad, Hamada
Metalaxyl is a broad-spectrum chiral fungicide that used for the protection of plants, however extensive use of metalaxyl resulted in serious environmental problems. Thus, a study on the detoxification mechanism in algae/cyanobacteria and their ability for phycoremediation is highly recommended. Here, we investigated the physiological and biochemical responses of two cyanobacterial species; Anabaena laxa and Nostoc muscorum to R-metalaxyl toxicity as well as their ability as phycoremediators. Two different levels of R-metalaxyl, at mild (10 mg/L) and high dose (25 mg/L), were applied for one-week. We found that A. laxa absorbed and accumulated more intracellular R-metalaxyl compared to N. muscorum. R-metalaxyl, which triggered a dose-based reduction in cell growth, photosynthetic pigment content, and photosynthetic key enzymes’ activities i.e., phosphoenolpyruvate carboxylase (PEPC) and ribulose‒1,5‒bisphosphate carboxylase/oxygenase (RuBisCo). These decreases were significantly less pronounced in A. laxa. On the other hand, R-metalaxyl significantly induced oxidative damage markers, e.g., H₂O₂ levels, lipid peroxidation (MDA), protein oxidation and NADPH oxidase activity. However, these increases were also lower in A. laxa compared to N. muscorum. To alleviate R-metalaxyl toxicity, A. laxa induced the polyphenols, flavonoids, tocopherols and glutathione (GSH) levels as well as peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-s-transferase (GST) enzyme activities. On the contrary, the significant induction of antioxidants in N. muscorum was restricted to ascorbate, catalase (CAT) and ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) enzyme activities. Although A. laxa accumulated more R-metalaxyl, it experienced less stress due to subsequent induction of antioxidants. Therefore, A. laxa may be a promising R-metalaxyl phycoremediator. Our results provided basic data for understanding the ecotoxicology of R-metalaxyl contamination in aquatic habitats and the toxicity indices among cyanobacteria.
Показать больше [+] Меньше [-]Occurrence and distribution of organophosphate esters in the air and soils of Ny-Ålesund and London Island, Svalbard, Arctic Полный текст
2020
Han, Xu | Hao, Yanfen | Li, Yingming | Yang, Ruiqiang | Wang, Pu | Zhang, Gaoxin | Zhang, Qinghua | Jiang, Guibin
The levels of eight organophosphate esters (OPEs) were analyzed in air and soil samples collected at Ny-Ålesund and London Island, Svalbard during the Chinese Scientific Research Expedition to the Arctic during 2014–2015. The concentrations of total OPEs (∑OPEs) ranged from 357 pg/m³ to 852 pg/m³ in the air and from 1.33 ng/g to 17.5 ng/g dry weight (dw) in the soils. Non-Cl OPEs accounted for 56 ± 13% and 62 ± 16% of ∑OPEs for the air and soil, respectively. Tris(2-chloroethyl) phosphate (TCEP) was the dominant compound in the air, with an average concentration of 180 ± 122 pg/m³. Triphenyl phosphate, tri(1-chloro-2-propyl) phosphate, and TCEP were the most abundant OPEs in the soils, with mean values of 1.77, 2.13, and 1.02 ng/g dw, respectively. Compared with the levels of polybrominated diphenyl ethers found in Arctic regions in previous studies, OPEs showed significantly higher concentrations, thereby indicating the large production and wide usage of OPEs globally. In addition, the fugacity fraction results indicated that net deposition from air to soil was dominated in the area. Overall, the occurrence and distribution of OPEs in the air and soils in the Arctic region indicated that OPEs can undergo long-range atmospheric transport and accumulate in remote regions.
Показать больше [+] Меньше [-]Human exposure to PCBs, PBDEs and bisphenols revealed by hair analysis: A comparison between two adult female populations in China and France Полный текст
2020
Peng, Feng-Jiao | Hardy, Emilie M. | Béranger, Rémi | Mezzache, Sakina | Bourokba, Nasrine | Bastien, Philippe | Li, Jing | Zaros, Cécile | Chevrier, Cécile | Palazzi, Paul | Soeur, Jeremie | Appenzeller, Brice M.R.
Humans are exposed to various anthropogenic chemicals in daily life, including endocrine-disrupting chemicals (EDCs). However, there are limited data on chronic, low-level exposure to such contaminants among the general population. Here hair analysis was used to investigate the occurrence of four polychlorinated biphenyls (PCBs), seven polybrominated diphenyl ethers (PBDEs) and two bisphenols (BPs) in 204 Chinese women living in the urban areas of Baoding and Dalian and 311 pregnant French women. All the PCBs and PBDEs tested here were more frequently detected in the hair samples of the French women than in those of the Chinese women. In both cohorts, PCB 180 and BDE 47 were the dominant PCB and PBDE congener, respectively. PCB 180 was found in 82% of the French women and 44% of the Chinese women, while the corresponding values of BDE 47 were 54% and 11%, respectively. A discriminant analysis further demonstrated the difference in PCBs and PBDEs exposure profile between the two cohorts. These results demonstrate that hair analysis is sufficiently sensitive to detect exposure to these pollutants and highlight differences in exposure between populations even at environmental levels. Although BPA and BPS were found in 100% of the hair samples in both cohorts, the French women had significantly higher levels of BPA and BPS than the Chinese women. The median concentrations of BPA were one order of magnitude higher than BPS in both the Chinese (34.9 versus 2.84 pg/mg) and the French women (118 versus 8.01 pg/mg) respectively. Our results suggest that both French and Chinese populations were extensively exposed to BPA and BPS.
Показать больше [+] Меньше [-]Polystyrene microplastics decrease accumulation of essential fatty acids in common freshwater algae Полный текст
2020
Guschina, Irina A. | Hayes, Anthony J. | Ormerod, Stephen J.
Despite growing concern about the occurrence of microplastics in aquatic ecosystems there is only rudimentary understanding of the pathways through which any adverse effects might occur. Here, we assess the effects of polystyrene microplastics (PS-MPs; <70 μm) on a common and widespread algal species, Chlorella sorokiniana. We used laboratory exposure to test the hypothesis that the lipids and fatty acids (FAs) are important molecules in the response reactions of algae to this pollutant. Cultivation with PS-MPs systematically reduced the concentration of essential linoleic acid (ALA, C18:3n-3) in C. sorokiniana, concomitantly increasing oleic acid (C18:1n-9). Among the storage triacylglycerols, palmitoleic and oleic acids increased at the expenses of two essential fatty acids, linoleic (LIN, C18:2n-6) and ALA, while PS-MPs had even more pronounced effects on the fatty acid and hydrocarbon composition of waxes and steryl esters. The FA composition of two major chloroplast galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), were affected implying changes in the conformational structure of photosynthetic complexes in ways that can impair the photosynthesis. These data reveal how exposure to polystyrene microplastics can modify the concentrations of lipid molecules that are important intrinsically in cell membranes, and hence the lipid bilayers that could form an important barrier between algal cellular compartments and plastics in the aquatic environment. Changes in lipid synthesis and fatty acid composition in algae could also have repercussions for food quality, growth and stressor resistance in primary consumers. We advocate further studies of microplastics effects on the lipid composition of primary producers, and of their potential propagation through aquatic food webs.
Показать больше [+] Меньше [-]A subcellular level study of copper speciation reveals the synergistic mechanism of microbial cells and EPS involved in copper binding in bacterial biofilms Полный текст
2020
Lin, Huirong | Wang, Chengyun | Zhao, Hongmei | Chen, Guancun | Chen, Xincai
The synergistic cooperation of microbial cells and their extracellular polymeric substances (EPS) in biofilms is critical for the biofilm’s resistance to heavy metals and the migration and transformation of heavy metals. However, the effects of different components of biofilms have not been fully understood. In this study, the spatial distribution and speciation of copper in the colloidal EPS, capsular EPS, cell walls and membranes, and intracellular fraction of unsaturated Pseudomonas putida (P. putida) CZ1 biofilms were fully determined at the subcellular level. It was found that 60–67% of copper was located in the extracellular fraction of biofilms, with 44.7–42.3% in the capsular EPS. In addition, there was 15.5–20.1% and 17.2–21.2% of copper found in the cell walls and membranes or the intracellular fraction, respectively. Moreover, an X-ray absorption fine structure spectra analysis revealed that copper was primarily bound by carboxyl-, phosphate-, and hydrosulfide-like ligands within the extracellular polymeric matrix, cell walls and membranes, and intracellular fraction, respectively. In addition, macromolecule quantification, fourier-transform infrared spectroscopy spectra and sulfur K-edge x-ray absorption near edge structure analysis further showed the carboxyl-rich acidic polysaccharides in EPS, phospholipids in cell walls and cell membranes, and thiol-rich intracellular proteins were involved in binding of copper in the different components of biofilm. The full understanding of the distribution and chemical species of heavy metals in biofilms not only promotes a deep understanding of the interaction mechanisms between biofilms and heavy metals, but also contributes to the development of effective biofilm-based heavy metal pollution remediation technologies.
Показать больше [+] Меньше [-]Impact of atrazine concentration on bioavailability and apparent isotope fractionation in Gram-negative Rhizobium sp. CX-Z Полный текст
2020
Chen, Songsong | Zhang, Kai | Jha, Rohit Kumar | Ma, Limin
Compound-specific stable isotope analysis of micropollutants has become an established method for the qualitative and quantitative assessment of biodegradation in the field. However, many of environmental factors may have an influence on the observed isotope fractionation. Herein, we investigate the impact of substrate concentration on the observed enrichment factor derived from Rayleigh plot of batch laboratory experiments conducted to measure the atrazine carbon isotope fractionation of Rhizobium sp. CX-Z subjected to the different initial concentration level of atrazine. The Rayleigh plot (changes in bulk concentration vs. isotopic composition) derived from batch experiments shown divergence from the linear relation towards the end of degradation, confirming bioavailability of atrazine changed along with the decay of substrate concentration, consequently, influenced the isotope fractionation and lowered the observed enrichment factor. When microbial degradation is coupled to a mass transfer step limiting the bioavailability of substrate, the observed enrichment factor displays a dependence on initial atrazine concentration. Observed enrichment factors (ε) (absolute value) derived from the low concentration (i.e. 9.5 μM) are below 3.5‰ to the value of −5.4‰ determined at high bioavailability (membrane-free cells). The observed enrichment factor depended significantly on the atrazine concentration, indicating the concentration level and the bioavailability of a substrate in realistic environments should be considered during the assessment of microbial degradation or in situ bioremediation based on compound-specific stable isotope analysis (CSIA) method.
Показать больше [+] Меньше [-]