Уточнить поиск
Результаты 681-690 из 7,995
Effects of the tributyltin on the blood parameters, immune responses and thyroid hormone system in zebrafish Полный текст
2021
Li, Zhi-Hua | Li, Ping
Tributyltin (TBT) is a widely used organotin compound around the world and was frequently detected in surface waters, which would pose risk to aquatic organisms. However, the mechanisms of TBT-induced toxicity is not full clear. The present study investigated the effects of the tributyltin (TBT) on the blood parameters, immune responses and thyroid hormone system in zebrafish. Fish were exposed to sublethal concentrations of TBT (10 ng/L, 100 ng/L and 300 ng/L) for 6 weeks. The effects of long-term exposure to TBT on blood parameters (NH3, ammonia; GLU, glucose; TP, total proteins; CK, creatine kinase; ALT, alanine aminotransferase; AST, aspartate aminotransferase), immune responses (Lys, lysozyme; IgM, immunoglobulin M) and some indexes related thyroid hormone system (T3, 3,5,3′-triiodothyronine; T4, thyroxine) were measured in zebrafish, as well as the expression of genes related to immune responses and thyroid hormone system. Based on the results, the physiological-biochemical responses was significantly enhanced with an increase in TBT concentration, reflected by the abnormal blood indices, dysregulation of endocrine system and immunotoxicity in zebrafish under TBT stress. The present study greatly extends our understanding of adverse effects of TBT on aquatic organisms.
Показать больше [+] Меньше [-]An assessment of contamination fingerprinting techniques for determining the impact of domestic wastewater treatment systems on private well supplies Полный текст
2021
Fennell, Christopher | Misstear, Bruce | O’Connell, David | Dubber, Donata | Behan, Patrice | Danaher, Martin | Moloney, Mary | Gill, Laurence
Private wells in Ireland and elsewhere have been shown to be prone to microbial contamination with the main suspected sources being practices associated with agriculture and domestic wastewater treatment systems (DWWTS). While the microbial quality of private well water is commonly assessed using faecal indicator bacteria, such as Escherichia coli, such organisms are not usually source-specific, and hence cannot definitively conclude the exact origin of the contamination. This research assessed a range of different chemical contamination fingerprinting techniques (ionic ratios, artificial sweeteners, caffeine, fluorescent whitening compounds, faecal sterol profiles and pharmaceuticals) as to their use to apportion contamination of private wells between human wastewater and animal husbandry wastes in rural areas of Ireland. A one-off sampling and analysis campaign of 212 private wells found that 15% were contaminated with E. coli. More extensive monitoring of 24 selected wells found 58% to be contaminated with E. coli on at least one occasion over a 14-month period. The application of fingerprinting techniques to these monitored wells found that the use of chloride/bromide and potassium/sodium ratios is a useful low-cost fingerprinting technique capable of identifying impacts from human wastewater and organic agricultural contamination, respectively. The artificial sweetener acesulfame was detected on several occasions in a number of monitored wells, indicating its conservative nature and potential use as a fingerprinting technique for human wastewater. However, neither fluorescent whitening compounds nor caffeine were detected in any wells, and faecal sterol profiles proved inconclusive, suggesting limited suitability for the conditions investigated.
Показать больше [+] Меньше [-]Cryptic night-time trace metal and metalloid contamination in an intensively cultivated coastal catchment Полный текст
2021
Conrad, Stephen R. | Santos, Isaac R. | White, Shane A. | Woodrow, Rebecca L. | Sanders, Christian J.
Detailed, high resolution time-series observations were performed to investigate sources, diel cycling, natural attenuation, and loadings of dissolved trace metals/metalloids in a subtropical headwater stream draining intensive horticulture in Australia. A transect of ∼3 km away from the source (farms) showed >75% reduction in concentration and loads of most trace elements. Mercury and arsenic had elevated loads downstream relative to other elements. Hourly time-series sampling revealed elevated creek discharge at night, accompanied by elevated nickel, selenium, copper, and mercury loads. Inputs from groundwater or treated sewage used for irrigation within the catchment are likely sources. Groundwater bore and treated sewage samples were highly contaminated with either zinc, copper, or mercury. Comparisons of daily and hourly samples indicated common sampling strategies can underestimate horticultural contaminant loadings. Load estimates for mercury and copper derived from hourly samples were 1.6- to 7- fold greater than loads from daily sample data collected over 79 days with varying rainfall. These high contaminant concentrations and loads are of concern to food products receiving irrigation and protected waterbodies downstream.
Показать больше [+] Меньше [-]Roads with underlying tar asphalt - spreading, bioavailability and toxicity of their polycyclic aromatic hydrocarbons Полный текст
2021
Kumpiene, Jurate | Larsson, Martin Oscar | Carabante, Ivan | Arp, Hans Peter H.
Some of the older Swedish roads contain road tar underneath a surface layer of bituminous asphalt. This road tar, also known as tar asphalt, contains large amounts of polycyclic aromatic hydrocarbons (PAHs). There is concern about PAHs spreading from the bottom layers of these older roads to the surrounding environment, and that because of this spreading road tar asphalt should not be recycled but rather placed in landfills. However, a risk assessment of PAH spreading below roads has not yet been conducted. The first aim of this study was to assess this potential spreading of PAHs from underlying tar asphalt to the sand beneath, the soil next to the roads, as well as nearby groundwater. The second aim was to measure the bioavailability and estimate the toxicity of PAHs in all relevant media using polyoxymethylene (POM) passive samplers. Four road sections and nearby groundwater in northern Sweden were investigated, including a control road without tar asphalt. PAHs were detected in all analysed solid media at varying concentrations: in asphalt from 2.3 to 4800 mg kg⁻¹, in underlying sand from <1.5 to 460 mg kg⁻¹ and in slope soil from <1.5 to 36 mg kg⁻¹. However, the spread of PAHs from the asphalt to roadside soil and groundwater was very limited. Groundwater at most of the road sections contained very low or non-detectable levels of PAHs (<0.08–0.53 μg L⁻¹, excluding one site where fuel contamination is hypothesized). The PAHs generally showed low bioavailability. Only asphalt with PAH content >1200 mg kg⁻¹ exhibited bioavailable concentrations that exceeded threshold concentrations for serious risk. The most PAH contaminated sand and soil samples exhibited low toxicity when considering bioavailability, only in some cases exceeding chronic toxicity threshold concentrations. These results were compared with the Swedish EPA's guideline values for PAH in contaminated soil, which is shown to overpredict toxicity for these sites. Further research on the leaching and transportation processes of PAHs from subsurface tar asphalt is recommended for developing risk analysis approaches.
Показать больше [+] Меньше [-]Anthropogenic emission inventory of multiple air pollutants and their spatiotemporal variations in 2017 for the Shandong Province, China Полный текст
2021
Zhou, Mimi | Jiang, Wei | Gao, Weidong | Gao, Xiaomei | Ma, Mingchun | Ma, Xiao
Shandong is the most populous and highly industrialized province in eastern China, and the resultant poor air quality is a cause for widespread concern. This study combines bottom–up and top–down approaches to develop a high-resolution anthropogenic emission inventory of air pollutants for 2017. The inventory was developed based on updated emission factors and detailed activity data. The emissions of sulfur dioxide (SO₂), nitrogen oxides (NOₓ), particulate matter with aerodynamic diameters smaller than 2.5 and 10 μm (PM₂.₅ and PM₁₀, respectively), carbon monoxide (CO), volatile organic compounds (VOCs), and ammonia (NH₃) were estimated to be 1387.8, 2488.6, 5281.7, 3193.0, 9250.7, 2254.7, and 1210.6 kt, respectively. Power plants were the largest contributors of SO₂ and NOₓ emissions accounting for 43.7% and 41.9% of the total emissions, respectively. CO emissions mainly originated from industrial processes (40.1%), mobile sources (24.8%), and fossil fuel burning (21.2%). The major sources of PM₁₀ and PM₂.₅ emissions were industrial processes and fugitive dust, contributing 83.0% and 86.9% of their total emissions, respectively. Industrial processes (60.0%) contributed the largest VOC emissions, followed by mobile sources (16.8%) and solvent use (14.5%). Livestock and N-fertilizers were major emitters of NH₃, accounting for 69.9% and 21.2% of the total emissions, respectively. Emissions were spatially allocated to grid cells with a resolution of 0.05 ° × 0.05 ° based on spatial surrogates, using Geographic Information System (GIS). Heavy pollutant emissions were mainly concentrated in the central and eastern areas of Shandong, while high NH₃–emissions occurred in the western region. Most pollutant emissions from industrial sectors occurred in June and July, while low emissions were recorded between January and February. Range uncertainties in emission inventory were quantified using Monte Carlo simulations. Our inventory provides effective information to understand local pollutant emission characteristics, perform air quality simulations, and formulate pollution control measures.
Показать больше [+] Меньше [-]Polycyclic aromatic hydrocarbon contamination along roads based on levels on vehicle window films Полный текст
2021
Zhang, Weiwei | Su, Penghao | Tomy, Gregg T. | Sun, Dan | Yin, Fang | Chen, Lisu | Ding, Yongsheng | Li, Yifan | Feng, Daolun
Vehicular emissions are known to be major contributors of airborne polycyclic aromatic hydrocarbons (PAHs) in cities. In order to assess the long-term contamination of PAHs along roads, we collected organic films from vehicle windows (26 private cars and 4 buses, in Shanghai, China) and used mathematical models to convert the film-bound PAH concentrations to the airborne PAH concentrations. The field measurements of airborne PAHs revealed that the partitioning and Level III fugacity model was suitable to estimate the airborne concentrations of high and low volatile PAHs (expect for naphthalene), respectively. The total airborne PAH concentrations along roads in Shanghai ranged from 0.83 to 3.37 μg m⁻³ and the incremental lifetime cancer risks (ILCRₜₒₜₐₗ) by exposure to PAHs along roads were greater than the USEPA lower guideline of 10⁻⁶, indicating non-negligible carcinogenic risks to drivers and passengers, especially via ingestion processes. This study provided a practicable method to investigate long-term air contamination of PAHs in vehicles and along roads based on film-bound PAH on vehicle windows. In addition, it was also possible to investigate the health risk in vehicles as a result of exposure to PAHs. Comparisons of PAHs between roads and shipping lanes also facilitated the delineation of vehicular and shipping PAH inventories.A capsule that summarizes the main finding of the work: Investigating film-bound PAH on vehicle windows is a practicable pathway to investigate the long-term contamination of PAHs in vehicles and along roads. This method can not only simplify the sampling processes, but the model calculations. The results also enabled investigations into ILCR in vehicles and specified source apportionment of traffic PAHs.
Показать больше [+] Меньше [-]Black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), and house fly, Musca domestica L. (Diptera: Muscidae), larvae reduce livestock manure and possibly associated nutrients: An assessment at two scales Полный текст
2021
Miranda, Chelsea D. | Crippen, Tawni L. | Cammack, Jonathan A. | Tomberlin, Jeffery K.
The industrial production of insects for waste management or as a protein source is becoming vital to our society. Large volumes of manure are produced by concentrated animal facilities around the globe that must be managed, utilized, and disposed of properly. Flies offer a partial solution with their abilities to reduce these wastes and heavy metal pollutants. Meat and crop proteins are being supplemented by insect proteins for many feeds across the globe, yet science-based studies behind the mass-rearing of insects are still in their infancy. In the current study, the percent change in the composition of nutrients, heavy metals, and fiber, in dairy, poultry, and swine manure degraded by either black soldier fly (BSF) or house fly (HF) larvae was explored. Pre-digested and post-digested manure samples were collected from four independent studies that differed in production scale (number of larvae and feeding regimen): 1) BSF small-scale (100 larvae fed incrementally), 2) HF small-scale (100 larvae fed incrementally), 3) BSF large-scale (10,000 larvae fed a single time), and 4) HF large-scale (4,000 larvae fed a single time). Results indicate that nitrogen is a key nutrient impacted by larval digestion of manure by both species, regardless of scale. However, scale significantly impacted reductions of other nutrients, as did the type of manure in which the insects were reared. Ultimately, this study demonstrated that manure type and rearing scale impact the ability of BSF and HF larvae to reduce nutrients and heavy metals in manure, and thus insect management procedures need to be congruent with production emphases of the insects for waste management or protein products. Failure to take scale into consideration could lead to inaccurate assumptions related to industrialized efforts on this topic.
Показать больше [+] Меньше [-]Metagenomic insights into the antibiotic resistome of mangrove sediments and their association to socioeconomic status Полный текст
2021
Imchen, Madangchanok | Kumavath, Ranjith
Mangrove sediments are prone to anthropogenic activities that could enrich antibiotics resistance genes (ARGs). The emergence and dissemination of ARGs are of serious concern to public health worldwide. Therefore, a comprehensive resistome analysis of global mangrove sediment is of paramount importance. In this study, we have implemented a deep machine learning approach to analyze the resistome of mangrove sediments from Brazil, China, Saudi Arabia, India, and Malaysia. Geography (RANOSIM = 39.26%; p < 0.005) as well as human intervention (RANOSIM = 16.92%; p < 0.005) influenced the ARG diversity. ARG diversity was also inversely correlated to the human development index (HDI) of the host country (R = −0.53; p < 0.05) rather than antibiotics consumption (p > 0.05). Several genes including multidrug efflux pumps were significantly (p < 0.05) enriched in the sites with human intervention. Resistome was consistently dominated by rpoB2 (19.26 ± 0.01%), multidrug ABC transporter (10.40 ± 0.23%), macB (8.84 ± 0.36n%), tetA (4.13 ± 0.35%), mexF (3.26 ± 0.19%), CpxR (2.93 ± 0.2%), bcrA (2.38 ± 0.24%), acrB (2.37 ± 0.18%), mexW (2.19 ± 0.17%), and vanR (1.99 ± 0.11%). Besides, mobile ARGs such as vanA, tet(48), mcr, and tetX were also detected in the mangrove sediments. Comparative analysis against terrestrial and ocean resistomes showed that the ocean ecosystem harbored the lowest ARG diversity (Chao1 = 71.12) followed by mangroves (Chao1 = 258.07) and terrestrial ecosystem (Chao1 = 294.07). ARG subtypes such as abeS and qacG were detected exclusively in ocean datasets. Likewise, rpoB2, multidrug ABC transporter, and macB, detected in mangrove and terrestrial datasets, were not detected in the ocean datasets. This study shows that the socioeconomic factors strongly determine the antibiotic resistome in the mangrove. Direct anthropogenic intervention in the mangrove environment also enriches antibiotic resistome.
Показать больше [+] Меньше [-]The influence of different antimony (Sb) compounds and ageing on bioavailability and fractionation of antimony in two dissimilar soils Полный текст
2021
Bagherifam, Saeed | Brown, Trevor C. | Wijayawardena, Ayanka | Naidu, R.
Assessing the bioavailability of various Sb substances plays a crucial role in human health and the ecological risk assessment of contaminated soils. However, fate, behaviour and bioavailability of different Sb compounds in soils are insufficiently known. Therefore, in this present study, the effects of soil properties and ageing on bioavailability of four different Sb compounds (C₈H₄K₂O₁₂Sb₂, Sb₂S₃, Sb₂O₃ and Sb₂O₃ nanoparticles) were evaluated during 120 days ageing time. A black soil (BS) with approximately 12% organic matter (OM) and a red soil (RS) with less than 1% OM were amended with 1000 mg Sb kg⁻¹ of different Sb compounds and subjected to single extractions with distilled (DI) water, 2M HNO₃, Simplified Bioaccessibility Extraction Test (SBET) and a modified Community Bureau of Reference (BCR) sequential extraction method. The results revealed that there are substantial variations in dissolution rate of various Sb sources, depending upon soil type and Sb compound. The amounts of DI water extractability of Sb during the incubation time varied between <1% and 2%, whereas HNO₃ extractable fractions and Sb bioaccessibility at the end of ageing time ranged between about 1%-3% and <1%–9% of the total Sb, with maximum bioaccessibility observed in BS contaminated with C₈H₄K₂O₁₂Sb₂. The residual and labile fractions accounted for 77–93% and 0.1–4% of the total Sb, respectively, indicating that Sb is mostly associated with recalcitrant fractions of the soils. The results of single and sequential extraction studies revealed that source of Sb, ageing time and soil properties can greatly affect the bioavailability of Sb in soils. The findings of this research provide a deeper understanding of the potential risks associated with Sb compounds and highlights the role of site-specific considerations for improving the robustness of toxicity guidelines and long-term management of Sb contaminated sites.
Показать больше [+] Меньше [-]Relative importance of aqueous leachate versus particle ingestion as uptake routes for microplastic additives (hexabromocyclododecane) to mussels Полный текст
2021
Jang, Mi | Shim, Won Joon | Han, Gi Myung | Cho, Youna | Moon, Yelim | Hong, Sang Hee
Microplastic pollution is emerging as a global environmental issue, and its potential for transferring hazardous chemicals to aquatic organisms is gaining attention. Studies have investigated the transfer of chemicals, mainly sorbed chemicals, through ingestion of microplastics by organisms, but limited information is available regarding chemical additives and uptake via the aqueous route through plastic leaching. In this study, we compared two bioaccumulation pathways of the additive hexabromocyclododecane (HBCD) by exposing mussels (Mytilus galloprovincialis) to two different sizes of expanded polystyrene (EPS): inedible size (4.2–5.5 mm) for leachate uptake and edible size (20–770 μm) for particle ingestion and leachate uptake. Over 10 days, the HBCD concentration increased significantly in mussels in the EPS exposure groups, indicating that EPS microplastic acts as a source of HBCD to mussels. The concentration and isomeric profiles of HBCD in mussels show that uptake through the aqueous phase is a more significant pathway for bioaccumulation of HBCD from EPS to mussels than particle ingestion. HBCD levels measured in EPS, leachate and exposed mussels from this study are environmentally relevant concentration. The fate and effects of chemical additives leached from plastic debris in ecosystem requires further investigation, as it may affect numerous environments and organisms through the aqueous phase.
Показать больше [+] Меньше [-]