Уточнить поиск
Результаты 741-750 из 4,309
Toxic elements and associations with hematology, plasma biochemistry, and protein electrophoresis in nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida Полный текст
2017
Perrault, Justin R. | Stacy, Nicole I. | Lehner, Andreas F. | Poor, Savannah K. | Buchweitz, John P. | Walsh, Catherine J.
Toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) are a group of contaminants that are known to elicit developmental, reproductive, general health, and immune system effects in reptiles, even at low concentrations. Reptiles, including marine turtles, are susceptible to accumulation of toxic elements due to their long life span, low metabolic rate, and highly efficient conversion of prey into biomass. The objectives of this study were to (1) document concentrations of arsenic, cadmium, lead, mercury, selenium, and thallium in whole blood and keratin from nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida and document correlations thereof and (2) correlate whole blood toxic element concentrations to various hematological and plasma biochemistry analytes. Baselines for various hematological and plasma analytes and toxic elements in whole blood and keratin (i.e., scute) in nesting loggerheads are documented. Various correlations between the toxic elements and hematological and plasma biochemistry analytes were identified; however, the most intriguing were negative correlations between arsenic, cadmium, lead, and selenium with and α- and γ-globulins. Although various extrinsic and intrinsic variables such as dietary and feeding changes in nesting loggerheads need to be considered, this finding may suggest a link to altered humoral immunity. This study documents a suite of health variables of nesting loggerheads in correlation to contaminants and identifies the potential of toxic elements to impact the overall health of nesting turtles, thus presenting important implications for the conservation and management of this species.
Показать больше [+] Меньше [-]Effect modification by apoptosis-related gene polymorphisms on the associations of phthalate exposure with spermatozoa apoptosis and semen quality Полный текст
2017
Yang, Pan | Gong, Ya-Jie | Wang, Yi-Xin | Liang, Xin-Xiu | Liu, Qing | Liu, Chong | Chen, Ying-Jun | Sun, Li | Lu, Wen-Qing | Zeng, Qiang
Human studies indicate that phthalate exposure is associated with adverse male reproductive health, and this association may be modified by genetic polymorphisms.We investigated whether apoptosis-related gene polymorphisms modified the associations of phthalate exposure with spermatozoa apoptosis and semen quality.In this Chinese population who sought for semen examination in an infertility clinic, we measured 8 phthalate metabolites in two urine samples to assess the individual's exposure levels. Apoptosis-related gene (Fas, FasL, and caspase3) polymorphisms were performed by real-time PCR. Spermatozoa apoptosis and semen quality parameters were evaluated by Annexin V/PI assay and computer-aided semen analysis, respectively.We found that Fas rs2234767, FasL rs763110, and caspase3 rs12108497 gene polymorphisms significantly modified the associations between urinary phthalate metabolites and spermatozoa apoptosis. For example, urinary monobutyl phthalate (MBP) associated with an increased percentage of Annexin V⁺/PI⁻ spermatozoa of 25.11% (95% CI: 4.08%, 50.53%) were only observed among men with CT/TT genotype of FasL rs763110. In addition, we found that caspase3 rs12108497 gene polymorphisms significantly modified the associations of urinary mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with decreased sperm concentration and sperm count (both p-values for interactions = 0.02).Our results provided the first evidence that apoptosis-related gene polymorphisms might contribute to the effects of phthalate exposure on male reproductive health.
Показать больше [+] Меньше [-]Evaluation of the effectiveness of air pollution control measures in Hong Kong Полный текст
2017
Lyu, X.P. | Zeng, L.W. | Guo, H. | Simpson, I.J. | Ling, Z.H. | Wang, Y. | Murray, F. | Louie, P.K.K. | Saunders, S.M. | Lam, S.H.M. | Blake, D.R.
From 2005 to 2013, volatile organic compounds (VOCs) and other trace gases were continuously measured at a suburban site in Hong Kong. The measurement data showed that the concentrations of most air pollutants decreased during these years. However, ozone (O3) and total non-methane hydrocarbon levels increased with the rate of 0.23 ± 0.03 and 0.34 ± 0.02 ppbv/year, respectively, pointing to the increasing severity of photochemical pollution in Hong Kong. The Hong Kong government has ongoing programs to improve air quality in Hong Kong, including a solvent program implemented during 2007–2011, and a diesel commercial vehicle (DCV) program since 2007. From before to after the solvent program, the sum of toluene, ethylbenzene and xylene isomers decreased continuously with an average rate of −99.1 ± 6.9 pptv/year, whereas the sum of ethene and propene increased by 48.2 ± 2.0 pptv/year from before to during the DCV program. Despite this, source apportionment results showed that VOCs emitted from diesel exhaust decreased at a rate of −304.5 ± 17.7 pptv/year, while solvent related VOCs decreased at a rate of −204.7 ± 39.7 pptv/year. The gasoline and liquefied petroleum gas vehicle emissions elevated by 1086 ± 34 pptv/year, and were responsible for the increases of ethene and propene. Overall, the simulated O3 rate of increase was lowered from 0.39 ± 0.03 to 0.16 ± 0.05 ppbv/year by the solvent and DCV programs, because O3 produced by solvent usage and diesel exhaust related VOCs decreased (p < 0.05) by 0.16 ± 0.01 and 0.05 ± 0.01 ppbv/year between 2005 and 2013, respectively. However, enhanced VOC emissions from gasoline and LPG vehicles accounted for most of the O3 increment (0.09 ± 0.01 out of 0.16 ± 0.05 ppbv/year) in these years. To maintain a zero O3 increment in 2020 relative to 2010, the lowest reduction ratio of VOCs/NOx was ∼1.5 under the NOx reduction of 20–30% which was based on the emission reduction plan for Pearl River Delta region in 2020.
Показать больше [+] Меньше [-]Alkali–earth metal bridges formed in biofilm matrices regulate the uptake of fluoroquinolone antibiotics and protect against bacterial apoptosis Полный текст
2017
Kang, Fuxing | Wang, Qian | Shou, Weijun | Collins, Chris D. | Gao, Yanzheng
Alkali–earth metal bridges formed in biofilm matrices regulate the uptake of fluoroquinolone antibiotics and protect against bacterial apoptosis Полный текст
2017
Kang, Fuxing | Wang, Qian | Shou, Weijun | Collins, Chris D. | Gao, Yanzheng
Bacterially extracellular biofilms play a critical role in relieving toxicity of fluoroquinolone antibiotic (FQA) pollutants, yet it is unclear whether antibiotic attack may be defused by a bacterial one-two punch strategy associated with metal-reinforced detoxification efficiency. Our findings help to assign functions to specific structural features of biofilms, as they strongly imply a molecularly regulated mechanism by which freely accessed alkali–earth metals in natural waters affect the cellular uptake of FQAs at the water-biofilm interface. Specifically, formation of alkali-earth-metal (Ca²⁺ or Mg²⁺) bridge between modeling ciprofloxacin and biofilms of Escherichia coli regulates the trans-biofilm transport rate of FQAs towards cells (135-nm-thick biofilm). As the addition of Ca²⁺ and Mg²⁺ (0–3.5 mmol/L, CIP: 1.25 μmol/L), the transport rates were reduced to 52.4% and 63.0%, respectively. Computational chemistry analysis further demonstrated a deprotonated carboxyl in the tryptophan residues of biofilms acted as a major bridge site, of which one side is a metal and the other is a metal girder jointly connected to the carboxyl and carbonyl of a FQA. The bacterial growth rate depends on the bridging energy at anchoring site, which underlines the environmental importance of metal bridge formed in biofilm matrices in bacterially antibiotic resistance.
Показать больше [+] Меньше [-]Alkali-earth metal bridges formed in biofilm matrices regulate the uptake of fluoroquinolone antibiotics and protect against bacterial apoptosis Полный текст
2017
Kang, Fuxing | Wang, Qian | Shou, Weijun | Collins, Chris D. | Gao, Yanzheng
Bacterially extracellular biofilms play a critical role in relieving toxicity of fluoroquinolone antibiotic (FQA) pollutants, yet it is unclear whether antibiotic attack may be defused by a bacterial one-two punch strategy associated with metal-reinforced detoxification efficiency. Our findings help to assign functions to specific structural features of biofilms, as they strongly imply a molecularly regulated mechanism by which freely accessed alkali–earth metals in natural waters affect the cellular uptake of FQAs at the water-biofilm interface. Specifically, formation of alkali-earth-metal (Ca2+ or Mg2+) bridge between modeling ciprofloxacin and biofilms of Escherichia coli regulates the trans-biofilm transport rate of FQAs towards cells (135-nm-thick biofilm). As the addition of Ca2+ and Mg2+ (0–3.5 mmol/L, CIP: 1.25 μmol/L), the transport rates were reduced to 52.4% and 63.0%, respectively. Computational chemistry analysis further demonstrated a deprotonated carboxyl in the tryptophan residues of biofilms acted as a major bridge site, of which one side is a metal and the other is a metal girder jointly connected to the carboxyl and carbonyl of a FQA. The bacterial growth rate depends on the bridging energy at anchoring site, which underlines the environmental importance of metal bridge formed in biofilm matrices in bacterially antibiotic resistance.
Показать больше [+] Меньше [-]Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field Полный текст
2017
Wilkinson, John | Hooda, Peter S. | Barker, James | Barton, Stephen | Swinden, Julian
Many of the products and drugs used commonly contain chemical components which may persist through sewage treatment works (STW) and eventually enter the aquatic environment as parent compounds, metabolites, or transformation products. Pharmaceuticals and personal care products (PPCPs) and other emerging contaminants (ECs) have been detected in waters (typically ng/L) as well as more recently bound to sediment and plastic particles (typically ng/g). Despite significant advancement of knowledge since the late 1990s, the fate of these contaminants/transformation products once introduced into the aquatic environment remains relatively unresolved.This review provides a unique focus on the fate of seven major groups of PPCPs/ECs in the aquatic environment, which is frequently not found in similar works which are often compound or topic-specific and limited in background knowledge. Key findings include: a) some replacements for regulation precluded/banned chemicals may be similarly persistent in the environment as those they replace, b) the adsorption of potentially bioactive chemicals to micro- and nanoplastics is a significant topic with risks to aquatic organisms potentially greater than previously thought, and c) micro-/nanoplastics are likely to remain of significant concern for centuries after regulatory limitations on their use become active due to the slow degradation of macro-plastics into smaller components.An interdisciplinary perspective on recent advances in the field is presented here in a unique way which highlights both the principle science and direction of research needed to elucidate the fate and transport patterns of aquatic PPCPs/ECs. Unlike similar reviews, which are often topic-specific, here we aim to present an overarching review of the field with focus on the occurrence, transformation and fate of emerging contaminants. Environmental presence of seven major classes of contaminants (analygesics, antibiotics, antineoplastics, beta-blockers, perfluorinated compounds, personal care products and plasticisers), factors affecting contaminant fate, association with plastic micro-/nanoparticles and photochemical transformation are comprehensively evaluated.
Показать больше [+] Меньше [-]Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture Полный текст
2017
Zhao, Zelong | Wang, Jing | Han, Ying | Chen, Jingwen | Liu, Guangfei | Lu, Hong | Yan, Bin | Chen, Shiaoshing
With the rapid development of aquaculture, the large amounts of pollutants were discharged into the aquatic environment, where the detected antibiotic resistance genes (ARGs) have drawn increasing attention due to their potential threats to ecological environment and human health. Thus, the impact of mariculture on ARGs was assessed and the underlying mechanism of their propagation was explained. Sediments from eight sampling sites were collected along a mariculture drainage ditch, and the sediment in Yellow River Delta National Park was used as a non-mariculture control. Microbial ARGs qPCR array and illumina sequencing of 16S rRNA gene were applied to examine the changing patterns of ARGs and bacterial communities. Results showed that 18 ARGs (3 fluoroquinolone, 1 aminoglycoside, 3 macrolide-lincosamide-streptogramin B, 2 tetracycline, and 9 beta-lactam resistance genes) were influenced by mariculture, and ARGs abundance and diversity were significantly increased in mariculture sediments (p < 0.05). A remarkable shift in bacterial community structure and composition was also observed. The abundance of most of ARGs were significantly decreased in the estuary samples, implying that seawater had a significant dilution effect on the ARGs emission from the mariculture sites. Partial redundancy analysis showed that nutrients, heavy metals, and bacteria communities might directly and indirectly contribute to ARGs propagation, suggesting that the profile and dissemination of ARGs were driven by the combined effects of multiple factors in mariculture-impacted sites.
Показать больше [+] Меньше [-]Accumulation of cadmium and uranium in arable soils in Switzerland Полный текст
2017
Bigalke, Moritz | Ulrich, Andrea | Rehmus, Agnes | Keller, Armin
Mineral phosphorus (P) fertilizers contain contaminants that are potentially hazardous to humans and the environment. Frequent mineral P fertilizer applications can cause heavy metals to accumulate and reach undesirable concentrations in agricultural soils. There is particular concern about Cadmium (Cd) and Uranium (U) accumulation because these metals are toxic and can endanger soil fertility, leach into groundwater, and be taken up by crops. We determined total Cd and U concentrations in more than 400 topsoil and subsoil samples obtained from 216 agricultural sites across Switzerland. We also investigated temporal changes in Cd and U concentrations since 1985 in soil at six selected Swiss national soil monitoring network sites. The mean U concentrations were 16% higher in arable topsoil than in grassland topsoil. The Cd concentrations in arable and grassland soils did not differ, which we attribute to soil management practices and Cd sources other than mineral P fertilizers masking Cd inputs from mineral P fertilizers. The mean Cd and U concentrations were 58% and 9% higher, respectively, in arable topsoil than in arable subsoil, indicating that significant Cd and U inputs to arable soils occurred in the past. Geochemical mass balances confirmed this, indicating an accumulation of 52% for Cd and 6% for U. Only minor temporal changes were found in the Cd concentrations in topsoil from the six soil-monitoring sites, but U concentrations in topsoil from three sites had significantly increased since 1985. Sewage sludge and atmospheric deposition were previously important sources of Cd to agricultural soils, but today mineral P fertilizers are the dominant sources of Cd and U. Future Cd and U inputs to agricultural soils may be reduced by using optimized management practices, establishing U threshold values for mineral P fertilizers and soils, effectively enforcing threshold values, and developing and using clean recycled P fertilizers.
Показать больше [+] Меньше [-]Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: A case study of the Bay of Brest (Brittany, France) Полный текст
2017
Frère, L. | Paul-Pont, I. | Rinnert, E. | Petton, S. | Jaffré, J. | Bihannic, I. | Soudant, P. | Lambert, C. | Huvet, A.
Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: A case study of the Bay of Brest (Brittany, France) Полный текст
2017
Frère, L. | Paul-Pont, I. | Rinnert, E. | Petton, S. | Jaffré, J. | Bihannic, I. | Soudant, P. | Lambert, C. | Huvet, A.
The concentration and spatial distribution of microplastics in the Bay of Brest (Brittany, France) was investigated in two surveys. Surface water and sediment were sampled at nine locations in areas characterized by contrasting anthropic pressures, riverine influences or water mixing. Microplastics were categorized by their polymer type and size class. Microplastic contamination in surface water and sediment was dominated by polyethylene fragments (PE, 53–67%) followed by polypropylene (PP, 16–30%) and polystyrene (PS, 16–17%) microparticles. The presence of buoyant microplastics (PE, PP and PS) in sediment suggests the existence of physical and/or biological processes leading to vertical transfer of lightweight microplastics in the bay. In sediment (upper 5 cm), the percentage of particles identified by Raman micro-spectroscopy was lower (41%) than in surface water (79%) and may explain the apparent low concentration observed in this matrix (0.97 ± 2.08 MP kg−1 dry sediment). Mean microplastic concentration was 0.24 ± 0.35 MP m−3 in surface water. We suggest that the observed spatial MP distribution is related to proximity to urbanized areas and to hydrodynamics in the bay. A particle dispersal model was used to study the influence of hydrodynamics on surface microplastic distribution. The outputs of the model showed the presence of a transitional convergence zone in the centre of the bay during flood tide, where floating debris coming from the northern and southern parts of the bay tends to accumulate before being expelled from the bay. Further modelling work and observations integrating (i) the complex vertical motion of microplastics, and (ii) their point sources is required to better understand the fate of microplastics in such a complex coastal ecosystem.
Показать больше [+] Меньше [-]Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: A case study of the Bay of Brest (Brittany, France) Полный текст
2017
Frere, L. | Paul-pont, I. | Rinnert, Emmanuel | Petton, Sebastien | Jaffre, J | Bihannic, Isabelle | Soudant, P. | Lambert, C. | Huvet, Arnaud
The concentration and spatial distribution of microplastics in the Bay of Brest (Brittany, France) was investigated in two surveys. Surface water and sediment were sampled at nine locations in areas characterized by contrasting anthropic pressures, riverine influences or water mixing. Microplastics were categorized by their polymer type and size class. Microplastic contamination in surface water and sediment was dominated by polyethylene fragments (PE, 53–67%) followed by polypropylene (PP, 16–30%) and polystyrene (PS, 16–17%) microparticles. The presence of buoyant microplastics (PE, PP and PS) in sediment suggests the existence of physical and/or biological processes leading to vertical transfer of lightweight microplastics in the bay. In sediment (upper 5 cm), the percentage of particles identified by Raman micro-spectroscopy was lower (41%) than in surface water (79%) and may explain the apparent low concentration observed in this matrix (0.97 ± 2.08 MP kg−1 dry sediment). Mean microplastic concentration was 0.24 ± 0.35 MP m−3 in surface water. We suggest that the observed spatial MP distribution is related to proximity to urbanized areas and to hydrodynamics in the bay. A particle dispersal model was used to study the influence of hydrodynamics on surface microplastic distribution. The outputs of the model showed the presence of a transitional convergence zone in the centre of the bay during flood tide, where floating debris coming from the northern and southern parts of the bay tends to accumulate before being expelled from the bay. Further modelling work and observations integrating (i) the complex vertical motion of microplastics, and (ii) their point sources is required to better understand the fate of microplastics in such a complex coastal ecosystem.
Показать больше [+] Меньше [-]Personal exposure to fine particulate matter, lung function and serum club cell secretory protein (Clara) Полный текст
2017
Wang, Cuicui | Cai, Jing | Chen, Renjie | Shi, Jingjin | Yang, Changyuan | Li, Huichu | Lin, Zhijing | Meng, Xia | Liu, Cong | Niu, Yue | Xia, Yongjie | Zhao, Zhuohui | Li, Weihua | Kan, Haidong
The underlying mechanisms about the association between ambient fine particulate matter (PM2.5) and lung function were unclear. Few epidemiological studies have evaluated the potential mediating effects of serum club cell secretory protein (Clara) (CC16), a biomarker of pulmonary epithelium integrity.To evaluate the short-term effect of personal PM2.5 exposure on lung function and to explore the potential mediating role of CC16 in this effect.We enrolled 36 healthy, nonsmoking college students for a panel study in Shanghai, China from December 17, 2014 to July 11, 2015. We measured personal and real-time exposure to PM2.5 for 72 h preceding each of four rounds of health examinations, including lung function test and serum CC16 measurement. We used linear mixed-effect models to examine the effects of PM2.5 on lung function and CC16 over various lag times. Furthermore, we analyzed the mediating effect of CC16 in the association between PM2.5 and lung function.Average PM2.5 exposure ranged from 36 to 52 μg/m3 across different lag periods. PM2.5 exposure was negatively associated with lung function and positively associated with serum CC16 concentration. The effect of PM2.5 on CC16 occurred earlier than that on lung function. For instance, an interquartile range (IQR) increase in 0–2 h average exposure to PM2.5 was significantly associated with a 4.84% increase in serum CC16; and an IQR increase in 3–6 h average exposure to PM2.5 was significantly associated with a 1.08% decrease in 1-sec forced expiratory volume. These effects lasted up to 24 h after exposure. Increased serum CC16 contributed 3.9%–36.3% of the association between PM2.5 and impaired lung function.Acute exposure to PM2.5 might induce an immediate decrease in lung function by virtue of the loss of pulmonary epithelium integrity.
Показать больше [+] Меньше [-]Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign Полный текст
2017
Crilley, Leigh R. | Lucarelli, Franco | Bloss, William J. | Harrison, Roy M. | Beddows, David C. | Calzolai, Giulia | Nava, Silvia | Valli, Gianluigi | Bernardoni, Vera | Vecchi, Roberta
London, like many major cities, has a noted air pollution problem, and a better understanding of the sources of airborne particles in the different size fractions will facilitate the implementation and effectiveness of control strategies to reduce air pollution. Thus, the trace elemental composition of the fine and coarse fraction were analysed at hourly time resolution at urban background (North Kensington, NK) and roadside (Marylebone Road, MR) sites within central London. Unlike previous work, the current study focuses on measurements during the summer providing a snapshot of contributing sources, utilising the high time resolution to improve source identification. Roadside enrichment was observed for a large number of elements associated with traffic emissions (Al, S, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Rb and Zr), while those elements that are typically from more regional sources (e.g. Na, Cl, S and K) were not found to have an appreciable increment. Positive Matrix Factorization (PMF) was applied for the source apportionment of the particle mass at both sites with similar sources being identified, including sea salt, airborne soil, traffic emissions, secondary inorganic aerosols and a Zn-Pb source. In the fine fraction, traffic emissions was the largest contributing source at MR (31.9%), whereas it was incorporated within an “urban background” source at NK, which had contributions from wood smoke, vehicle emissions and secondary particles. Regional sources were the major contributors to the coarse fraction at both sites. Secondary inorganic aerosols (which contained influences from shipping emissions and coal combustion) source factors accounted for around 33% of the PM10 at NK and were found to have the highest contributions from regional sources, including from the European mainland. Exhaust and non-exhaust sources both contribute appreciably to PM10 levels at the MR site, highlighting the continuing importance of vehicle-related air pollutants at roadside.
Показать больше [+] Меньше [-]