Уточнить поиск
Результаты 761-770 из 4,309
Atmospheric size-resolved trace elements in a city affected by non-ferrous metal smelting: Indications of respiratory deposition and health risk Полный текст
2017
Lyu, Yan | Zhang, Kai | Chai, Fahe | Cheng, Tiantao | Yang, Qing | Zheng, Zilong | Li, Xiang
This study examines size-resolved heavy metal data for particles sampled near an urban site affected by non-ferrous metal smelting in China with a focus on how particle sizes impact regional respiratory deposition behavior. Particles with aerodynamic diameters between 0.43 and 9 μm were collected during winter haze episodes from December 2011 to January 2012. The results showed that concentrations of individual trace elements ranged from ∼10⁻²–∼10⁴ ng/m³. Mass size distributions exhibit that Cu, Zn, As, Se, Ag, Cd, TI, and Pb have unimodal peak in fine particles range (<2.1 μm); Al, Ti, Fe, Sr, Cr, Co, Ni, Mo, and U have unimodal peak in coarse range (>2.1 μm), and Be, Na, Mg, Ca, Ba, Th, V, Mn, Sn, Sb, and K have bimodal profiles with a dominant peak in the fine range and a smaller peak in the coarse range. The total deposition fluxes of trace elements were estimated at 2.1 × 10⁻² – 4.1 × 10³ ng/h by the MPPD model, and the region with the highest contribution was the head region (42% ± 13%), followed by the tracheobronchial region (11% ± 3%) and pulmonary region (6% ± 1%). The daily intake of individual element for humans occurs via three main exposure pathways: ingestion (2.3 × 10⁻⁴ mg/kg/day), dermal contact (2.3 × 10⁻⁵ mg/kg/day), and inhalation (9.0 × 10⁻⁶ mg/kg/day). A further health risk assessment revealed that the risk values for humans were all above the guidelines of the hazard quotient (1) and cancer risk (10⁻⁶), indicating that there are potential non-cancer effects and cancer risks in this area.
Показать больше [+] Меньше [-]Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages Полный текст
2017
Tavares, Daiana Antonia | Dussaubat, Claudia | Kretzschmar, André | Carvalho, Stephan Malfitano | Silva-Zacarin, Elaine C.M. | Malaspina, Osmar | Bérail, Géraldine | Brunet, Jean-Luc | Belzunces, L. P. (Luc P.)
Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages Полный текст
2017
Tavares, Daiana Antonia | Dussaubat, Claudia | Kretzschmar, André | Carvalho, Stephan Malfitano | Silva-Zacarin, Elaine C.M. | Malaspina, Osmar | Bérail, Géraldine | Brunet, Jean-Luc | Belzunces, L. P. (Luc P.)
Under laboratory conditions, the effects of thiamethoxam were investigated in larvae, pupae and emerging honey bees after exposure at larval stages with different concentrations in the food (0.00001 ng/μL, 0.001 ng/μL and 1.44 ng/μL). Thiamethoxam reduced the survival of larvae and pupae and consequently decreased the percentage of emerging honey bees. Thiamethoxam induced important physiological disturbances. It increased acetylcholinesterase (AChE) activity at all developmental stages and increased glutathione-S-transferase (GST) and carboxylesterase para (CaEp) activities at the pupal stages. For midgut alkaline phosphatase (ALP), no activity was detected in pupae stages, and no effect was observed in larvae and emerging bees. We assume that the effects of thiamethoxam on the survival, emergence and physiology of honey bees may affect the development of the colony. These results showed that attention should be paid to the exposure to pesticides during the developmental stages of the honey bee. This study represents the first investigation of the effects of thiamethoxam on the development of A. mellifera following larval exposure.
Показать больше [+] Меньше [-]Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages Полный текст
2017
Tavares, Daiana Antonia | Dussaubat, Claudia | Kretzschmar, Andre | Carvalho, Stephan Malfitano | Silva-Zacarin, Elaine C.M. | Malaspina, Osmar | Bérail, Géraldine | Brunet, Jean-Luc | Belzunces, Luc | Departamento de Biologia ; Universidade Estadual Paulista Júlio de Mesquita Filho = São Paulo State University (UNESP) | Abeilles et Environnement (AE) ; Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU) | Biostatistique et Processus Spatiaux (BioSP) ; Institut National de la Recherche Agronomique (INRA) | Universidade Federal de Lavras = Federal University of Lavras (UFLA) | Universidade Federal de São Carlos [São Carlos] (UFSCar) | Laboratoire de l'Environnement et de l'Alimentation de la Vendée ; Institut National de la Recherche Agronomique (INRA) | Sao Paulo Research Foundation 2013/21634-8 2012/50197-2
Under laboratory conditions, the effects of thiamethoxam were investigated in larvae, pupae and emerging honey bees after exposure at larval stages with different concentrations in the food (0.00001 ng/µL, 0.001 ng/µL and 1.44 ng/µL). Thiamethoxam reduced the survival of larvae and pupae and consequently decreased the percentage of emerging honey bees. Thiamethoxam induced important physiological disturbances. It increased acetylcholinesterase (AChE) activity at all developmental stages and increased glutathione-S-transferase (GST) and carboxylesterase para (CaEp) activities at the pupal stages. For midgut alkaline phosphatase (ALP), no activity was detected in pupae stages, and no effect was observed in larvae and emerging bees. We assume that the effects of thiamethoxam on the survival, emergence and physiology of honey bees may affect the development of the colony. These results showed that attention should be paid to the exposure to pesticides during the developmental stages ofthe honey bee. This study represents the first investigation of the effects of thiamethoxam on the development of A. mellifera following larval exposure.
Показать больше [+] Меньше [-]Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols Полный текст
2017
Rösch, Carolin | Wissenbach, Dirk K. | Franck, Ulrich | Wendisch, Manfred | Schlink, Uwe
In indoor air, terpene-ozone reactions can form secondary organic aerosols (SOA) in a transient process. ‘Real world’ measurements conducted in a furnished room without air conditioning were modelled involving the indoor background of airborne particulate matter, outdoor ozone infiltrated by natural ventilation, repeated transient limonene evaporations, and different subsequent ventilation regimes. For the given setup, we disentangled the development of nucleated, coagulated, and condensed SOA fractions in the indoor air and calculated the time dependence of the aerosol mass fraction (AMF) by means of a process model. The AMF varied significantly between 0.3 and 5.0 and was influenced by the ozone limonene ratio and the background particles which existed prior to SOA formation. Both influencing factors determine whether nucleation or adsorption processes are preferred; condensation is strongly intensified by particulate background. The results provide evidence that SOA levels in natural indoor environments can surpass those known from chamber measurements. An indicator for the SOA forming potential of limonene was found to be limona ketone. Multiplying its concentration (in μg/m³) by 450(±100) provides an estimate of the concentration of the reacted limonene. This can be used to detect a high particle formation potential due to limonene pollution, e.g. in epidemiological studies considering adverse health effects of indoor air pollutants.
Показать больше [+] Меньше [-]Differential responses of peach (Prunus persica) seedlings to elevated ozone are related with leaf mass per area, antioxidant enzymes activity rather than stomatal conductance Полный текст
2017
Dai, Lulu | Li, Pin | Shang, Bo | Liu, Shuo | Yang, Aizhen | Wang, Younian | Feng, Zhaozhong
To evaluate the ozone (O3) sensitivity among peach tree (Prunus persica) cultivars widely planted in Beijing region and explore the possible eco-physiological response mechanisms, thirteen cultivars of peach seedlings were exposed to either charcoal-filtered air or elevated O3 (E-O3, non-filtered ambient air plus 60 ppb) for one growing season in open-top chambers. Leaf structure, stomatal structure, gas exchange and chlorophyll a fluorescence, photosynthetic pigments, antioxidant defense system and lipid peroxidation were measured in three replicated chambers. Results showed that E-O3 significantly reduced abaxial epidemis thickness, but no effects on the thicknesses of adaxial epidemis, palisade parenchyma and spongy parenchyma. Stomatal area, density and conductance were not significantly affected by E-O3. E-O3 significantly accelerated leaf senescence, as indicated by increased lipid peroxidation and more declines in light-saturated photosynthetic rate and pigments contents. The reduced ascorbate content (ASC) was decreased but antioxidant enzyme activity (CAT, APX and SOD) and total antioxidant capacity (TAC) were significantly increased by E-O3 among cultivars. The cultivars with visible symptoms also had more reductions in net photosynthetic rate than those without visible symptoms. Ozone sensitivity among cultivars was strongly linked to leaf mass per area (LMA), antioxidant enzymes activity e.g. SOD, APX rather than stomatal parameters (stomatal area, density and conductance) and ASC. Results could provide a theoretical basis for selecting and breeding the ozone-resistant cultivars of peach trees grown in high O3-polluted regions.
Показать больше [+] Меньше [-]Effects of local-scale decontamination in a secondary forest contaminated after the Fukushima nuclear power plant accident Полный текст
2017
Ayabe, Yoshiko | Hijii, Naoki | Takenaka, Chisato
We investigated whether local-scale decontamination (removal of the litter layer, superficial soil layer, and understory) in a secondary forest contaminated by the Fukushima nuclear power plant accident reduced 137Cs contamination of the soil and litter. We also measured 137Cs concentrations in plants and in the web-building spider Nephila clavata (Nephilidae: Arachnida), as an indicator species, to examine 137Cs contamination in arthropods. One month after decontamination, the total 137Cs contamination (soil + litter) was reduced by 20% (100 kBq·m−2) relative to that in an adjacent untreated (i.e., contaminated) area, which was however not statistically significant. Four months after decontamination, 137Cs in the decontaminated area had increased to a level similar to those in the untreated area, and the air radiation dose in the decontaminated area was about 2.1 μSv·h−1, significantly higher than that in the untreated area (1.9 μSv·h−1). This may have been attributed to a torrential rain event. Although no statistically significant reduction was observed, most spiders had a lower 137Cs contamination than that before the decontamination. This implied that the decontamination may have reduced 137Cs transfer from soil via litter to N. clavata through the detrital food chains, but may not have reduced the amount of 137Cs transfer through grazing food chains because the concentration of 137Cs in living tree leaves was not reduced by the decontamination. In autumn, about 2 kBq·m−2 of 137Cs was supplied from foliage to the ground by litterfall. The results suggested that removal of the litter and superficial soil layers in a contaminated forest may be ineffective. The present study suggests that the local-scale decontamination in a secondary forest had no effect on the reduction of 137Cs contamination in the treated area.
Показать больше [+] Меньше [-]Amphoteric modified vermiculites as adsorbents for enhancing removal of organic pollutants: Bisphenol A and Tetrabromobisphenol A Полный текст
2017
Lichuanjushi, | Wu, Pingxiao | Chen, Meiqing | Yu, Langfeng | Kang, Chunxi | Zhu, Nengwu | Dang, Zhi
Three novel organic vermiculites (VER) modified by amphoteric surfactants (BS, SB and PBS) with different negatively charged groups (carboxylate, sulfonate and phosphate) were demonstrated and used for removal of bisphenol A (BPA) and tetrabromobisphenol A (TBBPA). The difference in the structure and surface properties of modified vermiculites were investigated using a series of characterization methods. BS and SB surfactant mainly adsorbed on the surface and hard to intercalate into the interlayer of VER, while both adsorption and intercalation occurred in PBS modification. This difference resulted in different packing density of surfactant and hydrophobicity according to the results of contact angle, and affect the adsorption capacities ultimately. The adsorption of two pollutants onto these modified vermiculites were very fast and well fitted with pseudo-second-order kinetic model and Langmuir isotherm. PBS-VER exhibited the highest adsorption capacity (92.67 and 88.87 mg g−1 for BPA and TBBPA, respectively) than other two modified vermiculites in this order PBS-VER > BS-VER > SB-VER. The ionic strength (Na+, Ca2+) and coexisting compounds (Pb2+, humic acid) have different effects on the adsorption. PBS-VER had a good reusability and could remove ionic (methylene blue and orange G) and molecular (BPA) pollutants simultaneously and effectively due to the function of amphoteric hydrophilic groups and alkyl chains. The results might provide novel information for developing low-cost and effective adsorbents for removal of neutral and charged organic pollutants.
Показать больше [+] Меньше [-]Characteristics and source apportionment of PM2.5 during persistent extreme haze events in Chengdu, southwest China Полный текст
2017
Li, Lulu | Tan, Qinwen | Zhang, Yuanhang | Feng, Miao | Qu, Yu | An, Junling | Liu, Xingang
Based on detailed data from Chengdu Plain (CP) from 6 January to 16 January, two typical haze episodes were analyzed to clarify the haze formation mechanism in winter. Weather conditions, chemical compositions, secondary pollutant transformation, optical properties of aerosols, the potential source contribution function (PSCF) and source apportionment were studied. The planetary boundary layer (PBL) height decreased distinctly during the haze episodes and restrained air pollutant vertical dispersion. As the haze worsened, the value of PBL × PM2.5 increased notably. The [NO3−]/[SO42−] ratio was 0.61, 0.76 and 0.88 during a non-haze period, episode 1 and episode 2, respectively, indicating that the mobile source of the air pollution is increasingly predominant in Chengdu. Water vapor also played a vital role in the formation of haze by accelerating the chemical transformation of secondary pollutants, leading to the hygroscopic growth of aerosols. The PSCF and backward trajectories of the air masses indicated that the pollution mainly came from the south. The secondary inorganic aerosols, vehicle emissions, coal combustion, biomass burning, industry, and dust contributed 34.1%, 24.1%, 12.7%, 12.3%, 7.6%, and 7.2% to PM2.5 masses in episode 1 and 28.9%, 23.1%, 9.4%, 9.5%, 20.3% and 7.5% in episode 2.
Показать больше [+] Меньше [-]Long-term 2007–2013 monitoring of reproductive disturbance in the dun sentinel Assiminea grayana with regard to polymeric materials pollution at the coast of Lower Saxony, North Sea, Germany Полный текст
2017
Watermann, B. T. | Löder, M. | Herlyn, M. | Daehne, B. | Thomsen, A. | Gall, K.
Long-term 2007–2013 monitoring of reproductive disturbance in the dun sentinel Assiminea grayana with regard to polymeric materials pollution at the coast of Lower Saxony, North Sea, Germany Полный текст
2017
Watermann, B. T. | Löder, M. | Herlyn, M. | Daehne, B. | Thomsen, A. | Gall, K.
During biological effect monitoring studies of endocrine active compounds with the snail Assiminea grayana in 2007-2013, reproductive disorders including atresia, transformation of capsule/albumen glands into prostates in females and ovotestis, transformation of prostates to capsule/albumen glands, disruption of spermatogenesis, and calcification of tubules in males, were encountered in several years. The search of sources of endocrine active substances was first directed to antifouling biocides from paint particles and extended to leaching compounds from polymeric materials. In contrast to the reference sites, most of the observed disorders occurred at a station near harbors and dockyards polluted with residues from antifouling paints and polymeric materials. Beside of investigations about the potential ingestion of polymer particles by the snails, further investigations of compounds of polymeric materials with endocrine potential should follow.
Показать больше [+] Меньше [-]Long-term 2007–2013 monitoring of reproductive disturbance in the dun sentinel Assiminea grayana with regard to polymeric materials pollution at the coast of Lower Saxony, North Sea, Germany Полный текст
2017
Watermann, B. T. | Löder, M. | Herlyn, M. | Daehne, B. | Thomsen, A. | Gall, K
During biological effect monitoring studies of endocrine active compounds with the snail Assiminea grayana in 2007–2013, reproductive disorders including atresia, transformation of capsule/albumen glands into prostates in females and ovotestis, transformation of prostates to capsule/albumen glands, disruption of spermatogenesis, and calcification of tubules in males, were encountered in several years. The search of sources of endocrine active substances was first directed to antifouling biocides from paint particles and extended to leaching compounds from polymeric materials. In contrast to the reference sites, most of the observed disorders occurred at a station near harbors and dockyards polluted with residues from antifouling paints and polymeric materials. Beside of investigations about the potential ingestion of polymer particles by the snails, further investigations of compounds of polymeric materials with endocrine potential should follow.
Показать больше [+] Меньше [-]Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens | Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: Comparing non-metallicolous populations to the metallicolous ‘Ganges’ in field trials Полный текст
2017
Jacobs, Arnaud | Drouet, Thomas | Sterckeman, Thibault | Noret, Nausicaa | Fac Sci, Lab Ecol Vegetale & Biogeochim ; Université libre de Bruxelles (ULB) | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Regional Ministry for the Environment, Brussels, BE
Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens | Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: Comparing non-metallicolous populations to the metallicolous ‘Ganges’ in field trials Полный текст
2017
Jacobs, Arnaud | Drouet, Thomas | Sterckeman, Thibault | Noret, Nausicaa | Fac Sci, Lab Ecol Vegetale & Biogeochim ; Université libre de Bruxelles (ULB) | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Regional Ministry for the Environment, Brussels, BE
Urban soil contamination with trace metals is a major obstacle to the development of urban agriculture as crops grown in urban gardens are prone to accumulate trace metals up to toxic levels for human consumption.Phytoextraction is considered as a potentially cost-effective alternative to conventional methods such as excavation. Field trials of phytoextraction with Noccaea caerulescens were conducted on urban soils contaminated with Cd, Cu, Pb, and Zn (respectively around 2, 150–200, 400–500, and 400–700 μg g−1 of dry soil). Metallicolous (Ganges population) and non-metallicolous (NMET) populations were compared for biomass production and trace metal uptake. Moreover, we tested the effect of compost and fertilizer addition. Maximal biomass of 5 t ha−1 was obtained with NMET populations on some plots. Compared to Ganges— the high Cd-accumulating ecotype from South of France often used in phytoextraction trials— NMET populations have an advantage for biomass production and for Zn accumulation, with an average Zn uptake of 2.5 times higher. The addition of compost seems detrimental due to metal immobilization in the soil with little or no effect on plant growth. In addition to differences between populations, variations of growth and metal accumulation were mostly explained by soil Cd and Zn concentrations and texture.Our field trials confirm the potential of using N. caerulescens for both Cd and Zn remediation of moderately contaminated soils—with uptake values of up to 200 g Cd ha−1 and 47 kg Zn ha−1—and show the interest of selecting the adequate population according to the targeted metal.
Показать больше [+] Меньше [-]Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous ‘Ganges’ in field trials Полный текст
2017
Jacobs, Arnaud | Drouet, Thomas | Sterckeman, Thibault | Noret, Nausicaa
Urban soil contamination with trace metals is a major obstacle to the development of urban agriculture as crops grown in urban gardens are prone to accumulate trace metals up to toxic levels for human consumption. Phytoextraction is considered as a potentially cost-effective alternative to conventional methods such as excavation. Field trials of phytoextraction with Noccaea caerulescens were conducted on urban soils contaminated with Cd, Cu, Pb, and Zn (respectively around 2, 150–200, 400–500, and 400–700 μg g⁻¹ of dry soil). Metallicolous (Ganges population) and non-metallicolous (NMET) populations were compared for biomass production and trace metal uptake. Moreover, we tested the effect of compost and fertilizer addition. Maximal biomass of 5 t ha⁻¹ was obtained with NMET populations on some plots. Compared to Ganges— the high Cd-accumulating ecotype from South of France often used in phytoextraction trials— NMET populations have an advantage for biomass production and for Zn accumulation, with an average Zn uptake of 2.5 times higher. The addition of compost seems detrimental due to metal immobilization in the soil with little or no effect on plant growth. In addition to differences between populations, variations of growth and metal accumulation were mostly explained by soil Cd and Zn concentrations and texture. Our field trials confirm the potential of using N. caerulescens for both Cd and Zn remediation of moderately contaminated soils—with uptake values of up to 200 g Cd ha⁻¹ and 47 kg Zn ha⁻¹—and show the interest of selecting the adequate population according to the targeted metal.
Показать больше [+] Меньше [-]Decrease in the genotoxicity of metal-contaminated soils with biochar amendments Полный текст
2017
Rees, Frédéric | Dhyèvre, Adrien | Morel, Jean-Louis | Cotelle, Sylvie | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | French Lorraine Region ; European Regional Development Fund
Decrease in the genotoxicity of metal-contaminated soils with biochar amendments Полный текст
2017
Rees, Frédéric | Dhyèvre, Adrien | Morel, Jean-Louis | Cotelle, Sylvie | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | French Lorraine Region ; European Regional Development Fund
International audience | Biochar amendments, i.e., the solid product of biomass pyrolysis, reduce soil metal availability, which may lower the toxicity of metal-contaminated soils.A direct link between the decrease in soil metal availability and improved plant development is however often difficult to establish, as biochar may induce undesirable side effects on plant growth, e.g., a modification to plant nutrition. In order to investigate toxicity processes at a cellular level, roots of Vicia faba were exposed for 7 days to three metal-contaminated substrates and one control soil, amended with a 0 or 5% (w/w) addition of a wood-derived biochar.Exposure to pure biochar was also tested. Root tip cells were then observed to count the number of micronuclei as an estimation of DNA damage and the number of cells at mitosis stage. Results showed that biochar amendments led to a significant decrease in soil metal availability (Cd, Cu, Ni, Pb, and Zn) and to enhance root development on acidic substrates. The micronucleus frequency in root tip cells was positively correlated and the number of mitotic cells negatively, to the extractability of Zn in soils and to the concentration of Zn in secondary roots.Exposure to pure biochar caused a lower production of roots than most soil substrates, but led to the lowest number of observed micronuclei. In conclusion, biochar amendments can reduce the genotoxicity associated with the presence of metallic contaminants in soils, thereby potentially improving plant growth.
Показать больше [+] Меньше [-]Decrease in the genotoxicity of metal-contaminated soils with biochar amendments Полный текст
2017
Rees, Frédéric | Dhyèvre, Adrien | Morel, J. L. (Jean-Louis) | Cotelle, Sylvie
Biochar amendments, i.e., the solid product of biomass pyrolysis, reduce soil metal availability, which may lower the toxicity of metal-contaminated soils. A direct link between the decrease in soil metal availability and improved plant development is however often difficult to establish, as biochar may induce undesirable side effects on plant growth, e.g., a modification to plant nutrition. In order to investigate toxicity processes at a cellular level, roots of Vicia faba were exposed for 7 days to three metal-contaminated substrates and one control soil, amended with a 0 or 5% (w/w) addition of a wood-derived biochar. Exposure to pure biochar was also tested. Root tip cells were then observed to count the number of micronuclei as an estimation of DNA damage and the number of cells at mitosis stage. Results showed that biochar amendments led to a significant decrease in soil metal availability (Cd, Cu, Ni, Pb, and Zn) and to enhance root development on acidic substrates. The micronucleus frequency in root tip cells was positively correlated and the number of mitotic cells negatively, to the extractability of Zn in soils and to the concentration of Zn in secondary roots. Exposure to pure biochar caused a lower production of roots than most soil substrates, but led to the lowest number of observed micronuclei. In conclusion, biochar amendments can reduce the genotoxicity associated with the presence of metallic contaminants in soils, thereby potentially improving plant growth.
Показать больше [+] Меньше [-]