Уточнить поиск
Результаты 761-770 из 5,098
Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach
2018
Hu, Wenyou | Wang, Huifeng | Dong, Lurui | Huang, Biao | Borggaard, Ole K. | Bruun Hansen, Hans Christian | He, Yue | Holm, Peter E.
Intensive human activities, in particular agricultural and industrial production have led to heavy metal accumulation in the peri-urban agricultural soils of China threatening soil environmental quality and agricultural product security. A combination of spatial analysis (SA), Pb isotope ratio analysis (IRA), input fluxes analysis (IFA), and positive matrix factorization (PMF) model was successfully used to assess the status and sources of heavy metals in typical peri-urban agricultural soils from a rapidly developing region of China. Mean concentrations of Cd, As, Hg, Pb, Cu, Zn and Cr in surface soils (0–20 cm) were 0.31, 11.2, 0.08, 35.6, 44.8, 119.0 and 97.0 mg kg−1, respectively, exceeding the local background levels except for Hg. Spatial distribution of heavy metals revealed that agricultural activities have significant influence on heavy metal accumulation in the surface soils. Isotope ratio analysis suggested that fertilization along with atmospheric deposition were the major sources of heavy metal accumulation in the soils. Based on the PMF model, the relative contribution rates of the heavy metals due to fertilizer application, atmospheric deposition, industrial emission, and soil parent materials were 30.8%, 33.0%, 25.4% and 10.8%, respectively, demonstrating that anthropogenic activities had significantly higher contribution than natural sources. This study provides a reliable and robust approach for heavy metals source apportionment in this particular peri-urban area with a clear potential for future application in other regions.
Показать больше [+] Меньше [-]Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus)
2018
Ding, Jiannan | Zhang, Shanshan | Razanajatovo, Roger Mamitiana | Zou, Hua | Zhu, Wenbin
While the presence of microplastics (MPs) in marine environments has been detected worldwide, the importance of MPs pollution in freshwater environments has also been emphasized in recent years. However, the body of knowledge regarding the biological effects of MPs on freshwater organisms is still much more limited than on marine organisms. The aim of the present study was to evaluate the accumulation and tissue distribution of MPs in the freshwater fish red tilapia (Oreochromis niloticus), as well as the biochemical effects of MPs on O. niloticus. During 14 days of exposure to 0.1 μm polystyrene-MPs at concentrations of 1, 10, and 100 μg L−1, the MPs concentrations in various tissues of O. niloticus generally increased over time following the order gut > gills > liver ≈ brain. Moreover, the acetylcholinesterase (AChE) activity in the fish brain was inhibited by MPs exposure, with a maximum inhibition rate of 37.7%, suggesting the potential neurotoxicity of MPs to freshwater fish. The activities of cytochrome P450 (CYP) enzymes [7-ethoxyresorufin O-deethylase (EROD) and 7-benzyloxy-4-trifluoromethyl-coumarin O-dibenzyloxylase (BFCOD)] in the fish liver exhibited clear temporal variabilities, with significant decreases followed by elevations compared to the control. The alterations of the EROD and BFCOD activities indicate the potential involvement of CYP enzymes for the metabolism of MPs. The activity of antioxidative enzyme superoxide dismutase (SOD) in the liver was significantly induced throughout the exposure period, while the malondialdehyde (MDA) content did not vary with MPs exposure, suggesting that the antioxidative enzymatic system in O. niloticus could prevent oxidative damage. These results highlight the ingestion and accumulation of MPs in different tissues of freshwater fish, which lead to perturbations in fish biological systems and should be considered in environmental risk assessment.
Показать больше [+] Меньше [-]Attenuation of bacterial cytotoxicity of carbon nanotubes by riverine suspended solids in water
2018
Zhu, Baotong | Xia, Xinghui | Zhang, Sibo | Tang, Yuchen
The impact of solid particles on ecotoxicity of nanomaterials in water environments is poorly understood. This study investigated the effect of natural riverine suspended solids (SPS) on the cytotoxicity of single-walled carbon nanotubes (SWCNTs) towards a bacterium, Ochrobactrum sp. in water. Compared with SWCNT suspension without SPS, the presence of SPS at different concentrations ranging from 20 to 400 mg L⁻¹ markedly increased the survival rates of bacteria exposed to 50 mg L⁻¹ SWCNTs and bacterial survival rates increased with SPS concentrations by a power law. Sedimentation experiments and field emission scanning electron microscopy revealed the occurrence of heteroaggregation between SWCNTs and SPS, probably responsible for the reduced SWCNT toxicity. Furthermore, the extended Derjaguin-Landau-Verwey-Overbeek (ExDLVO) calculation showed the mitigated toxicity might also result from the decreased SWCNT-bacterium interaction energy with the increased SPS concentrations and the stronger SPS-SWCNT interaction than the SWCNT-bacterium interaction. This work provides new insights into our understanding of environmental hazards of engineered nanomaterials in aquatic systems.
Показать больше [+] Меньше [-]Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment
2018
Jarošíková, Alice | Ettler, Vojtéch | Mihaljevič, Martin | Penížek, Vít | Matoušek, Tomáš | Culka, Adam | Drahota, Petr
Dust emissions from copper smelters processing arsenic-bearing ores represent a risk to soil environments due to the high levels of As and other inorganic contaminants. Using an in situ experiment in four different forest and grassland soils (pH 3.2–8.0) we studied the transformation of As-rich (>50 wt% As) copper smelter dust over 24 months. Double polyamide bags with 1 g of flue dust were buried at different depths in soil pits and in 6-month intervals; then those bags, surrounding soil columns, and soil pore waters were collected and analysed. Dust dissolution was relatively fast during the first 6 months (5-34%), and mass losses attained 52% after 24 months. The key driving forces affecting dust dissolution were not only pH, but also the water percolation/retention in individual soils. Primary arsenolite (As2O3) dissolution was responsible for high As release from the dust (to 72%) and substantial increase of As in the soil (to a 56 × increase; to 1500 mg kg−1). Despite high arsenolite solubility, this phase persisted in the dust after 2 years of exposure. Mineralogical investigation indicated that mimetite [Pb5(AsO4)3(Cl,OH)], unidentified complex Ca-Pb-Fe-Zn arsenates, and Fe oxyhydroxides partly controlled the mobility of As and other metal(loid)s. Compared to As, other less abundant contaminants (Bi, Cu, Pb, Sb, Zn) were released into the soil to a lesser extent (8-40% of total). The relatively high mobility of As in the soil can be seen from decreases of bulk As concentrations after spring snowmelt, high water-extractable fractions with up to ∼50% of As(III) in extracts, and high As concentrations in soil pore waters. Results indicate that efficient controls of emissions from copper smelters and flue dust disposal sites are needed to prevent extensive contamination of nearby soils by persistent As.
Показать больше [+] Меньше [-]An endocrine-disrupting agricultural contaminant impacts sequential female mate choice in fish
2018
Tomkins, Patrick | Saaristo, Minna | Bertram, Michael G. | Michelangeli, Marcus | Tomkins, Raymond B. | Wong, Bob B.M.
The environmental impact of endocrine-disrupting chemicals (EDCs)—compounds that interfere with endocrine system function at minute concentrations—is now well established. In recent years, concern has been mounting over a group of endocrine disruptors known as hormonal growth promotants (HGPs), which are natural and synthetic chemicals used to promote growth in livestock by targeting the endocrine system. One of the most potent compounds to enter the environment as a result of HGP use is 17β-trenbolone, which has repeatedly been detected in aquatic habitats. Although recent research has revealed that 17β-trenbolone can interfere with mechanisms of sexual selection, its potential to impact sequential female mate choice remains unknown, as is true for all EDCs. To address this, we exposed female guppies (Poecilia reticulata) to 17β-trenbolone at an environmentally relevant level (average measured concentration: 2 ng/L) for 21 days using a flow-through system. We then compared the response of unexposed and exposed females to sequentially presented stimulus (i.e., unexposed) males that varied in their relative body area of orange pigmentation, as female guppies have a known preference for orange colouration in males. We found that, regardless of male orange pigmentation, both unexposed and exposed females associated with males indiscriminately during their first male encounter. However, during the second male presentation, unexposed females significantly reduced the amount of time they spent associating with low-orange males if they had previously encountered a high-orange male. Conversely, 17β-trenbolone-exposed females associated with males indiscriminately (i.e., regardless of orange colouration) during both their first and second male encounter, and, overall, associated with males significantly less than did unexposed females during both presentations. This is the first study to demonstrate altered sequential female mate choice resulting from exposure to an endocrine disruptor, highlighting the need for a greater understanding of how EDCs may impact complex mechanisms of sexual selection.
Показать больше [+] Меньше [-]Synergism of mixtures of dicamba and 2,4-dichlorophenoxyacetic acid herbicide formulations on the neotropical fish Cnesterodon decemmaculatus (Pisces, Poeciliidae)
2018
Ruiz de Arcaute, C. | Soloneski, S. | Larramendy, M.L.
Dicamba (DIC) and 2,4-dichlorophenoxyacetic acid (2,4-D) are two of the most applied auxinic herbicides worldwide, both individually and as part of a mixture. However, the toxicity and interactions achieved when applied as a mixture have not yet been characterised. The equitoxic and non-equitoxic acute toxicity exerted by binary mixtures of Banvel® (57.71% DIC) and DMA® (58.4% 2,4-D) on the Neotropical fish Cnesterodon decemmaculatus were evaluated. Results revealed mean values of 1.02 (range, 0.96–1.08) for the toxic unit (TU) that induced 50% mortality (TU50 96 h) to the fish exposed to binary equitoxic mixtures of the commercial formulations Banvel®–DMA®. These results suggest that the mixture is nearly concentration additive. Furthermore, results demonstrated the occurrence of synergistic interaction when non-equitoxic combinations of Banvel®-or DMA®-formulated herbicides were assayed. In this context and regardless of their concentrations, either Banvel®- or DMA®-induced toxicity were synergised by the presence of the counterpart within mixtures. The present study represents the first evidence of the lethality exerted by mixtures of two auxinic herbicides—namely, DIC and 2,4-D—reported to date for fish and other biotic matrices. When C. decemmaculatus is used as the target organism, a synergistic pattern is observed following exposure to a mixture of both herbicides.
Показать больше [+] Меньше [-]Nanoplastics impaired oyster free living stages, gametes and embryos
2018
Tallec, Kevin | Huvet, Arnaud | Di Poi, Carole | González-Fernández, Carmen | Lambert, Christophe | Petton, Bruno | Le Goïc, Nelly | Berchel, Mathieu | Soudant, Philippe | Paul Pont, Ika
In the marine environment, most bivalve species base their reproduction on external fertilization. Hence, gametes and young stages face many threats, including exposure to plastic wastes which represent more than 80% of the debris in the oceans. Recently, evidence has been produced on the presence of nanoplastics in oceans, thus motivating new studies of their impacts on marine life. Because no information is available about their environmental concentrations, we performed dose-response exposure experiments with polystyrene particles to assess the extent of micro/nanoplastic toxicity. Effects of polystyrene with different sizes and functionalizations (plain 2-μm, 500-nm and 50-nm; COOH-50 nm and NH₂-50 nm) were assessed on three key reproductive steps (fertilization, embryogenesis and metamorphosis) of Pacific oysters (Crassostrea gigas). Nanoplastics induced a significant decrease in fertilization success and in embryo-larval development with numerous malformations up to total developmental arrest. The NH₂-50 beads had the strongest toxicity to both gametes (EC₅₀ = 4.9 μg/mL) and embryos (EC₅₀ = 0.15 μg/mL), showing functionalization-dependent toxicity. No effects of plain microplastics were recorded. These results highlight that exposures to nanoplastics may have deleterious effects on planktonic stages of oysters, presumably interacting with biological membranes and causing cyto/genotoxicity with potentially drastic consequences for their reproductive success.
Показать больше [+] Меньше [-]Microbial community structure and function in sediments from e-waste contaminated rivers at Guiyu area of China
2018
Liu, Jun | Chen, Xi | Shu, Hao-yue | Lin, Xue-rui | Zhou, Qi-xing | Bramryd, Torleif | Shu, Wen-sheng | Huang, Li-nan
The release of toxic organic pollutants and heavy metals by primitive electronic waste (e-waste) processing to waterways has raised significant concerns, but little is known about their potential ecological effects on aquatic biota especially microorganisms. We characterized the microbial community composition and diversity in sediments sampled along two rivers consistently polluted by e-waste, and explored how community functions may respond to the complex combined pollution. High-throughput 16S rRNA gene sequencing showed that Proteobacteria (particularly Deltaproteobacteria) dominated the sediment microbial assemblages followed by Bacteroidetes, Acidobacteria, Chloroflexi and Firmicutes. PICRUSt metagenome inference provided an initial insight into the metabolic potentials of these e-waste affected communities, speculating that organic pollutants degradation in the sediment might be mainly performed by some of the dominant genera (such as Sulfuricurvum, Thiobacillus and Burkholderia) detected in situ. Statistical analyses revealed that toxic organic compounds contributed more to the observed variations in sediment microbial community structure and predicted functions (24.68% and 8.89%, respectively) than heavy metals (12.18% and 4.68%), and Benzo(a)pyrene, bioavailable lead and electrical conductivity were the key contributors. These results have shed light on the microbial assemblages in e-waste contaminated river sediments, indicating a potential influence of e-waste pollution on the microbial community structure and function in aquatic ecosystems.
Показать больше [+] Меньше [-]Use of biomarkers to evaluate the ecological risk of xenobiotics associated with agriculture
2018
Lima, Liana Bezerra Dias de | Morais, Paula Benevides de | Andrade, Ricardo Lopes Tortorela de | Mattos, Luciana Vieira | Moron, Sandro Estevan
This research aimed to evaluate the ecological risk of xenobiotics associated with agricultural activities by determining metal contents and biomarker responses using tucunaré (Cichla sp.) as a bioindicator. The work was conducted in the southwest region of the state of Tocantins, in the cities of Lagoa da Confusão and Pium. Water samples and specimens of Cichla sp. were collected in the Javaés and Formoso Rivers at three collection points (A, B and C). The concentrations of Cd, Pb, Cu, Cr, Mn, Ni and Zn in water and fish were analyzed. In fish, genotoxic, biochemical (glucose serum levels, AST (aspartate aminotransferase) and ALT (alanine aminotransferase) and histological (gills and liver) biomarkers were assessed. In the water, the Cr and Mn concentrations at the three collection points exceeded the values for Class 1 rivers. In the muscle, Cr was above the maximum limit allowed for human consumption at the three collection points, although the values at Points B and C were not significantly different from that at Point A (p > 0.05). At the three collection points, the micronucleus test revealed a low frequency of micronuclei. Significant hyperglycemia and a decrease in the AST activity of the fish collected at Point C was observed. In the gills, the most frequent alterations were at Stages I and II, which indicated mild to moderate damage, and epithelial detachment was the most frequent variation. In the liver tissue, the most frequently observed histological changes were at Stages I and II and included cytoplasmic vacuolization, nuclear hypertrophy, dilated sinusoids and bile stagnation. The integrated evaluation of these biomarkers indicated that fish collected from areas with intense agricultural activities presented adaptive responses that were likely caused by the availability and bioaccumulation of certain xenobiotics in the environment.
Показать больше [+] Меньше [-]Tree rings reveal the reduction of Cd, Cu, Ni and Pb pollution in the central region of São Paulo, Brazil
2018
Locosselli, Giuliano Maselli | Chacón-Madrid, Katherine | Arruda, Marco Aurélio Zezzi | Pereira de Camargo, Evelyn | Lopes Moreira, Tiana Carla | Saldiva de André, Carmen Diva | André, Paulo Afonso de | Singer, Julio M. | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Buckeridge, Marcos Silveira
The concern about environmental pollution has risen in the last decades because of its effects on human's health. However, evaluation of the exposure to certain pollutants is currently hampered by the availability of past environmental data. Tree rings are an alternative to reconstruct environmental variability of pre-instrumental periods. Nevertheless, this approach has some reported limitations including migration of chemical elements in the tree rings. The aim of this study was to evaluate the distribution of Cd, Cu, Hg, Na, Ni, Pb, Zn in the tree rings of Tipuana tipu (Fabaceae) to aid the reconstruction of past environmental pollution. We sampled trees in the central region of the city of São Paulo, Brazil, and scanned their tree rings using LA-ICP-MS. We used these data to evaluate the temporal trends of chemical elements under investigation. Results show a non-random distribution of these chemical elements within the tree rings, with higher content in the cell-walls of vessels and lower content in the fibers. Sodium was the only element intimately related to the axial parenchyma cells. Due to differences in elemental composition of xylem cells, temporal trends where evaluated using distinct quartiles of data distribution in each tree ring. The first quartile represents the lower content found in fibers and parenchyma, while the third quartile corresponds to the higher content found in vessels. Data from vessels better represent the decreasing trend of Cd, Cu, Pb, and Ni in the last three decades. This reduction is less significant for Na and Zn. Our results highlight the potential to improve the records of environmental pollution using data from different cells. Pronounced reduction in Pb may be attributed to the lead phase-out in gasoline, while the decreasing trend of Cd, Cu, Ni pollution is probably related to increasing efficiency of vehicles and the deindustrialization of São Paulo.Chemical elements are non-randomly distributed in tree rings. Chemical content of vessels cell-walls is a reliable record of metal pollution, which is decreasing in São Paulo.
Показать больше [+] Меньше [-]