Уточнить поиск
Результаты 811-820 из 3,991
Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo
2016
Wu, Qin | Yan, Wei | Liu, Chunsheng | Li, Li | Yu, Liqin | Zhao, Sujuan | Li, Guangyu
Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing developmental neurotoxicity, but the exact mechanism is little known. In this study, zebrafish embryos were exposed to 0, 0.8, 1.6 or 3.2 mg/L MCLR for 120 h. MCLR exposure through submersion caused serious hatching delay and body length decrease. The content of MCLR in zebrafish larvae was analyzed and the results demonstrated that MCLR can accumulate in zebrafish larvae. The locomotor speed of zebrafish larvae was decreased. Furthermore, the dopamine and acetylcholine (ACh) content were detected to be significantly decreased in MCLR exposure groups. And the acetylcholinesterase (AChE) activity was significantly increased after exposure to 1.6 and 3.2 mg/L MCLR. The transcription pattern of manf, chrnα7 and ache gene was consistent with the change of the dopamine content, ACh content and AChE activity. Gene expression involved in the development of neurons was also measured. ɑ1-tubulin and shha gene expression were down-regulated, whereas mbp and gap43 gene expression were observed to be significantly up-regulated upon exposure to MCLR. The above results indicated that MCLR-induced developmental toxicity might attribute to the disorder of cholinergic system, dopaminergic signaling, and the development of neurons.
Показать больше [+] Меньше [-]Impact of soil pH and organic matter on the chemical bioavailability of vanadium species: The underlying basis for risk assessment
2016
Reijonen, Inka | Metzler, Martina | Hartikainen, Helinä
The main objective of this study was to unravel the chemical reactions and processes dictating the potential bioavailability of vanadium (V). In environmental solutions V exists in two stable oxidation states, +IV and +V, of which + V is considered to be more toxic. In this study, the effect of speciation and soil pH on the chemical accessibility of V was investigated with two soils: 1) field soil rather rich in soil organic matter (SOM) and 2) coarse mineral soil low in SOM. Fresh soil samples treated with V(+V) (added as NaVO3) or V(+IV) (added as VOSO4) (pH adjusted to the range 4.0–6.9) were incubated for 3 months at 22 °C. The adsorption tendency of V species was explored by water extraction (Milli-Q water, 1:50 dw/V) and by sequential extraction (0.25 M KCl; 0.1 M KH2/K2HPO4; 0.1 M NaOH; 0.25 M H2SO4, 1:10 dw/V). The potential bioavailability of V was found to be dictated by soil properties. SOM reduced V(+V) to V(+IV) and acted as a sorbent for both species, which lowered the bioaccessibility of V. A high pH, in turn, favored the predominance of the V(+V) species and thus increased the chemical accessibility of V.
Показать больше [+] Меньше [-]Novel speciation method based on Diffusive Gradients in Thin Films for in situ measurement of uranium in the vicinity of the former uranium mining sites
2016
Drozdzak, Jagoda | Leermakers, Martine | Gao, Yue | Phrommavanh, Vannapha | Descostes, Michael
The Diffusive Gradients in Thin Films (DGT) technique using PIWBA resin (The Dow Chemical Company) was developed and validated for the measurement of uranium (U) concentration in natural and uranium mining influenced waters. The U uptake on the PIWBA resin gel was 97.3 ± 0.4% (batch method; Vsol = 5 mL; [U] = 20 μg L−1; 0.01 M NaNO3; pH = 7.0 ± 0.2). The optimal eluent was found to be HNO3conc/70 °C with an elution efficiency of 88.9 ± 1.4%. The laboratory DGT investigation demonstrated that the PIWBA resin gel exhibits a very good performance across a wide range of pH (3–9) and ionic strength (0.001–0.7 M NaNO3) at different time intervals. Neither effect of PO43− (up to 1.72 × 10−4 M), nor of HCO3− (up to 8.20 × 10−3 M) on the quantitative measurement of uranium by DGT-PIWBA method were observed. Only at very high Ca2+ (2.66 × 10−4 M), and SO42− (5.55 × 10−4 M) concentration, the U uptake on DGT-PIWBA was appreciably lessened. In-situ DGT field evaluation was carried out in the vicinity of three former uranium mining sites in France (Loire-Atlantique and Herault departments), which employ different water treatment technologies and have different natural geochemical characteristics. There was a similar or inferior U uptake on DGT-Chelex®-100 in comparison with the U accumulation on a DGT-PIWBA sampler. Most likely, the performance of Chelex®-100 was negatively affected by a highly complex matrix of mining waters. The high concentration and identity of co-accumulating analytes, typical for the mining environment, did not have a substantial impact on the quantitative uptake of labile U species on DGT- PIWBA.The use of the polyphenol impregnated anion exchange resin leads to a significant advancement in the application and development of the DGT technique for determination of U in the vicinity of the former uranium mining sites.
Показать больше [+] Меньше [-]Source contributions and mass loadings for chemicals of emerging concern: Chemometric application of pharmaco-signature in different aquatic systems
2016
Jiang, Jheng-Jie | Lee, Chon-Lin | Brimblecombe, Peter | Vydrova, Lucie | Fang, Meng-Der
To characterize the source contributions of chemicals of emerging concern (CECs) from different aquatic environments of Taiwan, we collected water samples from different aquatic systems, which were screened for 30 pharmaceuticals and illicit drugs. The total estimated mass loadings of CECs were 23.1 g/d in southern aquatic systems and 133 g/d in central aquatic systems. We developed an analytical framework combining pollutant fingerprinting, hierarchical cluster analysis (HCA), and principal component analysis with multiple linear regression (PCA-MLR) to infer the pharmaco-signature and source contributions of CECs. Based on this approach, we estimate source contributions of 62.2% for domestic inputs, 16.9% for antibiotics application, and 20.9% for drug abuse/medication in southern aquatic system, compared with 47.3% domestic, 35.1% antibiotic, and 17.6% drug abuse/medication inputs to central aquatic systems. The proposed pharmaco-signature method provides initial insights into the profile and source apportionment of CECs in complex aquatic systems, which are of importance for environmental management.
Показать больше [+] Меньше [-]Fugacity gradients of hydrophobic organics across the air-water interface measured with a novel passive sampler
2016
Wu, Chen-Chou | Yao, Yao | Bao, Lian-Jun | Wu, Feng-Chang | Wong, Charles S. | Tao, Shu | Zeng, E. Y. (Eddy Y.)
Mass transfer of hydrophobic organic contaminants (HOCs) across the air-water interface is an important geochemical process controlling the fate and transport of HOCs at the regional and global scales. However, few studies have characterized concentration or fugacity profiles of HOCs near both sides of the air-water interface, which is the driving force for the inter-compartmental mass transfer of HOCs. Herein, we introduce a novel passive sampling device which is capable of measuring concentration (and therefore fugacity) gradients of HOCs across the air-water interface. Laboratory studies indicated that the escaping fugacity values of polycyclic aromatic hydrocarbons (PAHs) from water to air were negatively correlated to their volatilization half-lives. Results for field deployment were consistent between the passive sampler and an active method, i.e., a combination of grab sampling and liquid-liquid extraction. In general, the fugacity profiles of detected PAHs were indicative of an accumulation mechanism in the surface microlayer of the study regions (Haizhu Lake and Hailing Bay of Guangdong Province, China), while p,p'-DDD tended to volatilize from water to the atmosphere in Hailing Bay. Furthermore, the fugacity profiles of the target analytes increased towards the air-water interface, reflecting the complexity of environmental behavior of the target analytes near the air-water interface. Overall, the passive sampling device provides a novel means to better characterize the air-water diffusive transfer of HOCs, facilitating the understanding of the global cycling of HOCs.
Показать больше [+] Меньше [-]In situ investigation into surfactant effects on the clearance of polycyclic aromatic hydrocarbons adsorbed onto soybean leaf surfaces
2016
Sun, Haifeng | Wang, Weipeng | Guo, Shuai | Zhang, Yong
The partitioning of polycyclic aromatic hydrocarbons (PAHs) in agricultural crop leaves, contributes to the exposure of organisms to these chemicals through the dietary pathway. To precisely predict the fate of PAHs and crop safety, the clearance of three-ringed phenanthrene (Phe) and four-ringed pyrene (Pyr) adsorbed individually onto living soybean leaf surfaces, as well as the effects of two surfactants, namely, an ionic surfactant (sodium dodecylbenzene sulfonate, SDBS) and a non-ionic surfactant (polyoxyethyleneglycol dodecyl ether, Brij35), were investigated in situ using the laser-induced nanosecond time-resolved fluorescence (LITRF) method. The effects varied significantly with surfactant types primarily in terms of the elimination rates and the final residues of PAH chemicals. With increasing SDBS and Brij35 concentrations, volatilization rate constants (kC) of both Phe and Pyr initially decreased at fast rates and then at more moderate rates later on, resulting from the plasticizing effect of surfactants adsorbed on leaf surfaces. In addition, the photolysis rate constants (kP) decreased with the presence of SDBS but increased with the presence of Brij35. Overall, the total clearance rates of PAHs (kT) adsorbed onto living soybean leaf surfaces were inhibited by the presence of SDBS but promoted by the presence of Brij35. These observations show that surfactants may significantly alter the clearance of PAHs in agricultural systems, and the potential impact of surfactants on crop safety is closely related to surfactant types in natural environments.
Показать больше [+] Меньше [-]Temperature modulates phototrophic periphyton response to chronic copper exposure
2016
Lambert, Anne Sophie | Dabrin, Aymeric | Morin, Soizic | Gahou, Josiane | Foulquier, Arnaud | Coquery, Marina | Pesce, Stéphane
Streams located in vineyard areas are highly prone to metal pollution. In a context of global change, aquatic systems are generally subjected to multi-stress conditions due to multiple chemical and/or physical pressures. Among various environmental factors that modulate the ecological effects of toxicants, special attention should be paid to climate change, which is driving an increase in extreme climate events such as sharp temperature rises. In lotic ecosystems, periphyton ensures key ecological functions such as primary production and nutrient cycling. However, although the effects of metals on microbial communities are relatively well known, there is scant data on possible interactions between temperature increase and metal pollution. Here we led a study to evaluate the influence of temperature on the response of phototrophic periphyton to copper (Cu) exposure. Winter communities, collected in a 8 °C river water, were subjected for six weeks to four thermal conditions in microcosms in presence or not of Cu (nominal concentration of 15 μg L⁻¹). At the initial river temperature (8 °C), our results confirmed the chronic impact of Cu on periphyton, both in terms of structure (biomass, distribution of algal groups, diatomic composition) and function (photosynthetic efficiency). At higher temperatures (13, 18 and 23 °C), Cu effects were modulated. Indeed, temperature increase reduced Cu effects on algal biomass, algal class proportions, diatom assemblage composition and photosynthetic efficiency. This reduction of Cu effects on periphyton may be related to lower bioaccumulation of Cu and/or to selection of more Cu-tolerant species at higher temperatures.
Показать больше [+] Меньше [-]The level of mercury contamination in mariculture sites at the estuary of Pearl River and the potential health risk
2016
Tao, H.C. | Zhao, K.Y. | Ding, W.Y. | Li, J.B. | Liang, P. | Wu, S.C. | Wong, M.H.
In the present study, the Hg contamination in mariculture sites located at the estuary of Pearl River was to investigate with an attempt to analyse associated health risks of dietary exposure to both total mercury (THg) and methyl mercury (MeHg) in cultured fish and shellfish. The highest total mercury concentration (7.037 ± 0.556 ng L−1) of seawater was observed at Zhuhai Estuary. The Hg concentrations of sediment in Guishan Island were significantly higher (p < 0.05) than in Daya Bay (away from the Pearl River). Besides, the both THg and MeHg levels in sediment at mariculture sites were higher (p < 0.05) than corresponding reference sites. It was attributed to the fact that mariculture activities increased Hg loading and promoted MeHg production. The vertical distribution of Hg in sediment cores demonstrated that mercury methylation mostly occurred at the sediment-water interface. Results of health risk assessments showed that fish consumption would impose a higher risk to children but less to adults, while shellfish produced in the studied area was safe for consumption.
Показать больше [+] Меньше [-]Competitive sorption of heavy metals by water hyacinth roots
2016
Zheng, Jia-Chuan | Liu, Hou-Qi | Feng, Huimin | Li, Wen-Wei | Lam, Michael Hon-Wah | Lam, Paul Kwan-Sing | Yu, Han-Qing
Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca2+ and Mg2+. However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry.
Показать больше [+] Меньше [-]The plasticizer bisphenol A affects somatic and sexual development, but differently in pipid, hylid and bufonid anurans
2016
Tamschick, Stephanie | Rozenblut-Kościsty, Beata | Ogielska, Maria | Kekenj, David | Gajewski, Franz | Kruger, Angela | Kloas, Werner | Stöck, Matthias.
Due to their terrestrial habitats and aquatic reproduction, many amphibians are both very vulnerable and highly suitable bioindicators. The plasticizer bisphenol A (BPA) is one of the most produced chemical substances worldwide, and knowledge on its impacts on humans and animals is mounting. BPA is used for the industrial production of polycarbonate plastics and epoxy resins and found in a multitude of consumer products. Studies on BPA have involved mammals, fish and the fully aquatic anuran model Xenopus laevis. However, our knowledge about the sexual development of non-model, often semi-terrestrial anuran amphibians remains poor. Using a recently developed experimental design, we simultaneously applied BPA to two non-model species (Hyla arborea, Hylidae; Bufo viridis, Bufonidae) and the model X. laevis (Pipidae), compared their genetic and phenotypic sex for detection of sex reversals, and studied sexual development, focusing on anatomical and histological features of gonads. We compared three concentrations of BPA (0.023, 2.28 and 228 μg/L) to control groups in a high-standard flow-through-system, and tested whether conclusions, drawn from the model species, can be extrapolated to non-model anurans. In contrast to previous studies on fish and Xenopus, often involving dosages much higher than most environmental pollution data, we show that BPA causes neither the development of mixed sex nor of sex-reversed individuals (few, seemingly BPA-independent sex reversals) in all focal species. However, environmentally relevant concentrations, as low as 0.023 μg/L, were sufficient to provoke species-specific anatomically and histologically detectable impairments of gonads, and affected morphological traits of metamorphs. As the intensity of these effects differed between the three species, our data imply that BPA diversely affects amphibians with different evolutionary history, sex determination systems and larval ecologies. These results highlight the role of amphibians as a sensitive group that is responsive to environmental pollution.
Показать больше [+] Меньше [-]