Уточнить поиск
Результаты 811-820 из 6,558
Etoxazole induces testicular malfunction in mice by dysregulating mitochondrial function and calcium homeostasis Полный текст
2020
Epidemiological relationships between pesticide use and male infertility have been suggested for a long time. Etoxazole (ETX), an oxazoline pesticide, has been extensively used for pest eradication. It is considered relatively safe and has low mammalian toxicity because it specifically inhibits chitin synthesis. However, ETX may have toxic effects on the reproductive system. In this study, we examined the effects of ETX on the reproductive system using mouse testis cell lines (TM3 for Leydig cells and TM4 for Sertoli cells) and C57BL/6 male mice. We confirmed that ETX has anti-proliferative effects on the TM3 and TM4 cell lines. Moreover, ETX induced mitochondrial dysfunction and hampers calcium homeostasis. Western blot analysis of MAPK and Akt signaling cascades was performed to demonstrate the mode of action of ETX at a molecular level. Moreover, ETX induced misregulation of genes related to testicular function. Upon oral administration of ETX in C57BL/6 male mice, testis weight was reduced and transcriptional expression related to testis function was altered. These results indicate that ETX induces testicular toxicity by inducing mitochondrial dysfunction and calcium imbalance and regulating gene expression.
Показать больше [+] Меньше [-]Simultaneous Microcystis algicidal and microcystin synthesis inhibition by a red pigment prodigiosin Полный текст
2020
Wei, Jia | Xie, Xian | Huang, Feiyu | Xiang, Lin | Wang, Yin | Han, Tongrui | Massey, Isaac Yaw | Liang, Geyu | Pu, Yuepu | Yang, Fei
Microcystis blooms and their secondary metabolites microcystins (MCs) occurred all over the world, which have damaged aquatic ecosystems and threatened public health. Techniques to reduce the Microcystis blooms and MCs are urgently needed. This study aimed to investigate the algicidal and inhibitory mechanisms of a red pigment prodigiosin (PG) against the growth and MC-producing abilities of Microcystis aeruginosa (M. aeruginosa). The numbers of Microcystis cells were counted under microscope. The expression of microcystin synthase B gene (mcyB) and concentrations of MCs were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme linked immunosorbent assay (ELISA) methods, respectively. The inhibitory effects of PG against M. aeruginosa strain FACHB 905 with 50% algicidal concentration (LC50) at 120 h was 0.12 μg/mL. When M. aeruginosa cells exposed to 0.08 μg/mL, 0.16 μg/mL, 0.32 μg/mL PG, the expression of mcyB of M. aeruginosa was down-regulated 4.36, 8.16 and 18.51 times lower than that of the control at 120 h. The concentrations of total MC (TMC) also were 1.66, 1.72 and 5.75 times lower than that of the control at 120 h. PG had high algicidal effects against M. aeruginosa, with the activities of superoxide dismutase (SOD) initially increased and then decreased after 72 h, the contents of malondialdehyde (MDA) increase, the expression of mcyB gene down-regulation, and MCs synthesis inhibition. This study was first to report the PG can simultaneously lyse Microcystis cells, down-regulate of mcyB expression and inhibit MCs production effectively probably due to oxidative stress, which indicated PG poses a great potential for regulating Microcystis blooms and MCs pollution in the environment.
Показать больше [+] Меньше [-]Metal accumulation in dragonfly nymphs and crayfish as indicators of constructed wetland effectiveness Полный текст
2020
Fletcher, Dean E. | Lindell, Angela H. | Stankus, Paul T. | Fletcher, Nathaniel D. | Lindell, Brooke E. | McArthur, J. Vaun
Constructed wetland effectiveness is often assessed by measuring reductions of contaminant concentrations in influent versus departing effluent, but this can be complicated by fluctuations in contaminant content/chemistry and hydrology. We assessed effectiveness of a constructed wetland at protecting downstream biota from accumulating elevated metal concentrations—particularly copper and zinc in effluents from a nuclear materials processing facility. Contaminants distributed throughout a constructed wetland system and two reference wetlands were assessed using six dragonfly nymph genera (Anax, Erythemis, Libellula, Pachydiplax, Tramea, and Plathemis) as biomonitors. Additionally, the crayfish, Cambarus latimanus, were analyzed from the receiving and two reference streams. Concentrations of Cu, Zn, Pb, Mn, Cr, Cd, and Al were evaluated in 597 dragonfly nymph and 149 crayfish whole-body composite samples. Dragonfly genera varied substantially in metal accumulation and the ability to identify elevated metal levels throughout components of the constructed wetland. Genera more closely associated with bottom sediments tended to accumulate higher levels of metals with Libellula, Pachydiplax, and Erythemis often accumulating highest concentrations and differing most among sites. This, combined with their abundance and broad distributions make the latter two species suitable candidates as biomonitors for constructed wetlands. As expected, dragonfly nymphs accumulated higher metal concentrations in the constructed wetland than reference sites. However, dragonfly nymphs often accumulated as high of metal concentrations downstream as upstream of the water treatment cells. Moreover, crayfish from the receiving stream near the constructed wetland accumulated substantially higher Cu concentrations than from downstream locations or reference streams. Despite reducing metal concentrations at base flow and maintaining regulatory compliance, metal fluxes from the wetland were sufficient to increase accumulation in downstream biota. Future work should evaluate the causes of downstream accumulation as the next step necessary to develop plans to improve the metal sequestering efficiency of the wetland under variable flow regimes.
Показать больше [+] Меньше [-]Determination of six groups of mycotoxins in Chinese dark tea and the associated risk assessment Полный текст
2020
Chinese dark tea is widely enjoyed for its multiple health-promoting effects and pleasant taste. However, its production involves fermentation by microbiota in raw tea, some of which are filamentous fungi and thus potential mycotoxin producers. Accordingly, whether mycotoxins pose health risk on dark tea consumption has become a public concern. In this study, a cleaning method of multi-functional column (MFC) and immunoaffinity column (IAC) in tandem combined to HPLC detection was developed and validated for determining ten mycotoxins of six groups (i.e., aflatoxins of B₁, B₂, G₁ and G₂, ochratoxin A, zearalenone, deoxynivalenol, fumonisins of B₁, B₂, and T-2) in dark teas. The interferences from secondary metabolites were effectively reduced, and the sensitivities and recoveries of the method were qualified for tea matrices. Six groups mycotoxins were determined in 108 samples representing the major Chinese dark teas by using the new method. Subsequently, the dietary exposure and health risks were evaluated for different age and gender groups in Kunming and Pu’er in China and Ulan Bator in Mongolia. The occurrence of zearalenone was 4.63% and that of ochratoxin A was 1.85%, with the other four groups mycotoxins were below the limits of quantification. The hazard index values for the five groups’ non-carcinogenic mycotoxins were far below 1.0. The deterministic risk assessment indicated no non-carcinogenic risks for dark tea consumption in the three areas. Probabilistic estimation showed that the maximum value of 95th percentile carcinogenic risk value for the aflatoxins was 2.12 × 10⁻⁸, which is far below the acceptable carcinogenic risk level (10⁻⁶). Hereby, six groups mycotoxins in Chinese dark tea showed no observed risk concern to consumers.
Показать больше [+] Меньше [-]Health and climate benefits of Electric Vehicle Deployment in the Greater Toronto and Hamilton Area Полный текст
2020
This study presents the results of an integrated model developed to evaluate the environmental and health impacts of Electric Vehicle (EV) deployment in a large metropolitan area. The model combines a high-resolution chemical transport model with an emission inventory established with detailed transportation and power plant information, as well as a framework to characterize and monetize the health impacts. Our study is set in the Greater Toronto and Hamilton Area (GTHA) in Canada with bounding scenarios for 25% and 100% EV penetration rates. Our results indicate that even with the worst-case assumptions for EV electricity supply (100% natural gas), vehicle electrification can deliver substantial health benefits in the GTHA, equivalent to reductions of about 50 and 260 premature deaths per year for 25% and 100% EV penetration, compared to the base case scenario. If EVs are charged with renewable energy sources only, then electrifying all passenger vehicles can prevent 330 premature deaths per year, which is equivalent to $3.8 Billion (2016$CAD) in social benefits. When the benefit of EV deployment is normalized per vehicle, it is higher than most incentives provided by the government, indicating that EV incentives can generate high social benefits.
Показать больше [+] Меньше [-]Temporal and spatial analysis of per and polyfluoroalkyl substances in surface waters of Houston ship channel following a large-scale industrial fire incident Полный текст
2020
Firefighting foams contain per- and polyfluoroalkyl substances (PFAS) – a class of compounds widely used as surfactants. PFAS are persistent organic pollutants that have been reported in waterways and drinking water systems across the United States. These substances are of interest to both regulatory agencies and the general public because of their persistence in the environment and association with adverse health effects. PFAS can be released in large quantities during industrial incidents because they are present in most firefighting foams used to suppress chemical fires; however, little is known about persistence of PFAS in public waterways after such events. In response to large-scale fires at Intercontinental Terminal Company (ITC) in Houston, Texas in March 2019, almost 5 million liters of class B firefighting foams were used. Much of this material flowed into the Houston Ship Channel and Galveston Bay (HSC/GB) and concerns were raised about the levels of PFAS in these water bodies that have commercial and recreational uses. To evaluate the impact of the ITC incident response on PFAS levels in HSC/GB, we collected 52 surface water samples from 12 locations over a 6-month period after the incident. Samples were analyzed using liquid chromatography–mass spectrometry to evaluate 27 PFAS, including perfluorocarboxylic acids, perfluorosulfonates and fluorotelomers. Among PFAS that were evaluated, 6:2 FTS and PFOS were detected at highest concentrations. Temporal and spatial profiles of PFAS were established; we found a major peak in the level of many PFAS in the days and weeks after the incident and a gradual decline over several months with patterns consistent with the tide- and wave-associated water movements. This work documents the impact of a large-scale industrial fire, on the environmental levels of PFAS, establishes a baseline concentration of PFAS in HSC/GB, and highlights the critical need for development of PFAS water quality standards.
Показать больше [+] Меньше [-]DEHP induces neutrophil extracellular traps formation and apoptosis in carp isolated from carp blood via promotion of ROS burst and autophagy Полный текст
2020
Yirong, Cao | Shengchen, Wang | Jiaxin, Sun | Shuting, Wang | Ziwei, Zhang
Di (2-ethylhexyl) phthalate (DEHP), a widely spreading environmental endocrine disruptor, has been confirmed to adversely affect the development of animals and humans. The formation of neutrophil extracellular traps (NETs) termed NETosis, is a recently identified antimicrobial mechanism for neutrophils. Though previous researches have investigated inescapable role of the immunotoxicity in DEHP-exposed model, relatively little is known about the effect of DEHP on NETs. In this study, carp peripheral blood neutrophils were treated with 40 and 200 μmol/L DEHP to investigate the underlying mechanisms of DEHP-induced NETs formation. Through the morphological observation of NETs and quantitative analysis of extracellular DNA, we found that DEHP exposure induced NETs formation. Moreover, our results proved that DEHP could increase reactive oxygen species (ROS) levels, decrease the expression of the anti-autophagy factor (mTOR) and the anti-apoptosis gene Bcl-2, and increase the expression of pro-autophagy genes (Dynein, Beclin-1 and LC3B) and the pro-apoptosis factors (BAX, Fas, FasL, Caspase3, Caspase8, and Caspase9), thus promoting autophagy and apoptosis. These results indicate that DEHP-induced ROS burst stimulates NETs formation mediated by autophagy and increases apoptosis in carp neutrophils.
Показать больше [+] Меньше [-]Nanoplastics exposure modulate lipid and pigment compositions in diatoms Полный текст
2020
Nanoplastics exposure modulate lipid and pigment compositions in diatoms Полный текст
2020
The impact of nanoplastics (NP) using model polystyrene nanoparticles amine functionalized (PS–NH₂) has been investigated on pigment and lipid compositions of the marine diatom Chaetoceros neogracile, at two growth phases using a low (0.05 μg mL⁻¹) and a high (5 μg mL⁻¹) concentrations for 96 h. Results evidenced an impact on pigment composition associated to the light-harvesting function and photoprotection mainly at exponential phase. NP also impacted lipid composition of diatoms with a re-adjustment of lipid classes and fatty acids noteworthy. Main changes upon NP exposure were observed in galactolipids and triacylglycerol’s at both growth phases affecting the thylakoids membrane structure and cellular energy reserve of diatoms. Particularly, exponential cultures exposed to high NP concentration showed an impairment of long chain fatty acids synthesis. Changes in pigment and lipid content of diatom’ cells revealed that algae physiology is determinant in the way cells adjust their thylakoid membrane composition to cope with NP contamination stress. Compositions of reserve and membrane lipids are proposed as sensitive markers to assess the impact of NP exposure, including at potential predicted environmental doses, on marine organisms.
Показать больше [+] Меньше [-]Nanoplastics exposure modulate lipid and pigment compositions in diatoms Полный текст
2020
Gonzalez-fernandez, Carmen | Le Grand, Fabienne | Bideau, Antoine | Huvet, Arnaud | Paul-pont, Ika | Soudant, Philippe
The impact of nanoplastics (NP) using model polystyrene nanoparticles amine functionalized (PS–NH2) has been investigated on pigment and lipid compositions of the marine diatom Chaetoceros neogracile, at two growth phases using a low (0.05 μg mL−1) and a high (5 μg mL−1) concentrations for 96 h. Results evidenced an impact on pigment composition associated to the light-harvesting function and photoprotection mainly at exponential phase. NP also impacted lipid composition of diatoms with a re-adjustment of lipid classes and fatty acids noteworthy. Main changes upon NP exposure were observed in galactolipids and triacylglycerol's at both growth phases affecting the thylakoids membrane structure and cellular energy reserve of diatoms. Particularly, exponential cultures exposed to high NP concentration showed an impairment of long chain fatty acids synthesis. Changes in pigment and lipid content of diatom’ cells revealed that algae physiology is determinant in the way cells adjust their thylakoid membrane composition to cope with NP contamination stress. Compositions of reserve and membrane lipids are proposed as sensitive markers to assess the impact of NP exposure, including at potential predicted environmental doses, on marine organisms.
Показать больше [+] Меньше [-]Role of functional groups in reaction kinetics of dithiothreitol with secondary organic aerosols Полный текст
2020
The toxicity of organic aerosols has been largely ascribed to the generation of reactive oxygen species, which could subsequently induce oxidative stress in biological systems. The reaction of DTT with redox-active species in PM has been generally assumed to be pseudo-first order, with the oxidative potential of PM being represented by the DTT consumption per minute of reaction time per μg of PM. Although catalytic reactive species such as transition metals and quinones are long believed to be the main contributors of DTT responses, the role of non-catalytic DTT reactive species such as organic hydroperoxides (ROOH) and electron-deficient alkenes (e.g., conjugated carbonyls) in DTT consumption has been recently highlighted. Thus, understanding the reaction kinetics and mechanisms of DTT consumption by various PM components is required to interpret the oxidative potential measured by DTT assays more accurately. In this study, we measured the DTT consumptions over time and characterized the reaction products using model compounds and secondary organic aerosols (SOA) with varying initial concentrations. We observed that the DTT consumption rates linearly increased with both initial DTT and sample concentrations. The overall reaction order of DTT with non-catalytic reactive species and SOA in this study is second order. The reactions of DTT with different functional groups have significantly different rate constants. The reaction rate constant of isoprene SOA with DTT is mainly determined by the concentration of ROOH. For toluene SOA, both ROOH and electron-deficient alkenes may dominate its DTT reaction rates. These results provide some insights into the interpretation of DTT-based aerosol oxidative potential and highlight the need to study the toxicity mechanism of ROOH and electron-deficient alkenes in PM for future work.
Показать больше [+] Меньше [-]Occurrence and distribution of melamine and its derivatives in surface water, drinking water, precipitation, wastewater, and swimming pool water Полный текст
2020
Zhu, Hongkai | Kannan, Kurunthachalam
The extensive use of melamine and its three derivatives (i.e., ammeline, ammelide, and cyanuric acid) resulted in their widespread occurrence in the environment. Nevertheless, limited information is available on their distribution in the aquatic environment. In this study, concentrations and profiles of melamine and its derivatives were determined in 223 water samples, comprising river water, lake water, seawater, tap water, bottled water, rain water, wastewater, and swimming pool water, collected from New York State, USA. The sum concentrations of melamine and its derivatives (∑₄MELs) decreased in the following order: swimming pool water (median: 1.5 × 10⁷ ng/L) ≫ wastewater (1240) > precipitation (739) > tap water (512) > river water (370) > lake water (347) > seawater (186) > bottled water (98). Cyanuric acid was the major compound, accounting for 60–100% of ∑₄MELs concentrations in swimming pool water, wastewater, precipitation, tap water, seawater, and bottled water, whereas melamine dominated in river and lake water (54–64% of ∑₄MELs). Significant positive correlations (0.499 < R < 0.703, p < 0.002) were found between the concentrations of melamine and atrazine (a triazine herbicide) in surface waters. The geographic distribution in the concentrations of ∑₄MELs in river, lake, and tap water corresponded with the degree of urbanization, suggesting that human activities contribute to the sources melamine and cyanuric acid in the aquatic environments. A preliminary hazard assessment of melamine and cyanuric acid in waters suggested that their ecological or human health risks were minimal. This is the first study to document the occurrence and spatial distribution of melamine and its derivatives in waters from the United States.
Показать больше [+] Меньше [-]