Уточнить поиск
Результаты 821-830 из 7,988
Mastication of polyolefins alters the microbial composition in Galleria mellonella
2021
Peydaei, Asal | Bagheri, Hedayat | Gurevich, Leonid | de Jonge, Nadieh | Nielsen, Jeppe Lund
Recent studies have indicated that Galleria mellonella larvae ingest polyethylene films and the degradation mechanism could inspire biotechnological exploitation for degrading plastic to eliminate global pollution from plastic waste. In this study, we tested the chemical compositions of masticated and ingested different plastic types by G. mellonella. High throughput sequencing of 16S rRNA gene was used to characterize the alteration of the microbial communities derived from salivary glands, gut contents and whole G. mellonella larvae. Our results indicated that G. mellonella is able to masticate polyethylene (PE), expanded polystyrene (EPS) and polypropylene (PP) and convert it to small particles with very large and chemically modified surfaces. The characteristics of the polymer affect the rate of damage. Formation of functional carbonyl groups on the appearance of oxidized metabolic intermediates of polyolefins in the frass samples observed. We found that the mastication of EPS, PP or PE could significantly alter the microbial composition in the gut content while it did not appear to influence the salivary glands microbial community. Representatives of Desulfovibrio vulgaris and Enterobacter grew with the PE diet while mastication of polystyrene and polypropylene increased the abundance of Enterococcus. The evaluation of bacterial communities in whole larvae confirmed the obtained result and additionally showed that the abundance of Paenibacillus, Corynebacterium and Commamonadaceae increased by Styrofoam (EPS) consumption.
Показать больше [+] Меньше [-]Biological iron nitrogen cycle in ecological floating bed: Nitrogen removal improvement and nitrous oxide emission reduction
2021
Sun, Shanshan | Gu, Xushun | Zhang, Manping | Tang, Li | He, Shengbing | Huang, Jungchen
Ecological floating beds (EFBs) have become a superior method for treating secondary effluent from wastewater treatment plant. However, insufficient electron donor limited its denitrification efficiency. Iron scraps from lathe cutting waste consist of more than 95% iron could be used as electron donors to enhance denitrification. In this study, EFBs with and without iron scraps supplementation (EFB-Fe and EFB, respectively) were conducted to explore the impacts of iron scraps addition on nitrogen removal, nitrous oxide (N₂O) emissions and microbial communities. Results showed the total nitrogen (TN) removal in EFB-Fe improved to 79% while that in EFB was 56%. N₂O emission was 0–6.20 mg m⁻² d⁻¹ (EFB-Fe) and 1.74–15.2 mg m⁻² d⁻¹ (EFB). Iron scraps could not only improve nitrogen removal efficiency, but also reduce N₂O emissions. In addition, high-throughput sequencing analysis revealed that adding iron scraps could improve the sum of denitrification related genera, among which Novosphingobium accounted for the highest proportion (6.75% of PFe1, 4.24% of PFe2, 3.18% of PFe3). Iron-oxidizing bacteria and iron-respiring bacteria associated with and nitrate reducing bacteria mainly concentrated on the surface of iron scraps. Principal co-ordinates analysis (PCoA) indicated that iron scraps were the key factor affecting microbial community composition. The mechanism of iron scraps enhanced nitrogen removal was realized by enhanced biological denitrification process. Iron release dynamic from iron scraps was detected in bench-scale experiment and the electron transfer mechanism was that Fe⁰ transferred electrons directly to NO₃⁻-N, and biological iron nitrogen cycle occurred in EFB-Fe without secondary pollution.
Показать больше [+] Меньше [-]Measure-specific environmental benefits of air pollution control for coal-fired industrial boilers in China from 2015 to 2017
2021
Wang, Kun | Tong, Yali | Yue, Tao | Gao, Jiajia | Wang, Chenlong | Zuo, Penglai | Liu, Jieyu
From 2015 to 2017, China took strong air pollution control measures (APCMs) for coal-fired industrial boilers (CFIBs), including eliminating CFIBs, promoting clean fuels, and updating air pollution control devices (APCDs). Based on the industrial boiler’s emission inventory of air pollutants, measure-specific emission reductions from 2015 to 2017 was estimated in this study. Besides, the measure-specific environmental benefits of unit emission reduction on concentration and deposition flux were systematically evaluated by WRF-CMAQ model. The total emission reductions for CFIBs of PM₁₀, PM₂.₅, SO₂, NOx, Hg, As, Cd, Cr and Pb from 2015 to 2017 were 1.2 Tg, 0.53 Tg, 2.06 Tg, 0.65 Tg, 37.6 tons, 179.5 tons, 17.9 tons, 1029.3 tons and 676.0 tons, respectively. Based on meteorological fields in 2017, their corresponding national population-weighted mitigated concentration was 1.8 μg m⁻³, 1.3 μg m⁻³, 3.6 μg m⁻³, 0.6 μg m⁻³ (NO₂), 0.076 ng m⁻³, 0.37 ng m⁻³, 0.04 ng m⁻³, 1.83 ng m⁻³ and 2.3 ng m⁻³, respectively. Updating APCDs was identified as the major measure to reduce air pollutants (except NOₓ), accounting for more than 35% of emission reductions and mitigated concentration. Moreover, elimination was the major NOx reduction method, contributing to 55% of NOx emission reductions. The promoting of fuels, including replacement of CFIBs with gas-fired and biomass-fired industrial boilers, had higher environmental benefits for unit emission reductions. Furthermore, there were still more than 43,000 CFIBs with the capacity <10 t h⁻¹, accounting for 14%, 21%, and 11% of total PM₂.₅, SO₂, and NOX emissions for CFIBs in 2017; meanwhile, 20% and 59% of CFIBs did not install flue gas desulfurization and denitrification devices, respectively. Therefore, it is recommended to give priority to phase out CFIBs with capacity <10 t h⁻¹ and APCDs updating for larger capacity CFIBs in the future.
Показать больше [+] Меньше [-]Associations between metabolic syndrome and four heavy metals: A systematic review and meta-analysis
2021
Xu, Ping | Liu, Aiping | Li, Fengna | Tinkov, Alexey A. | Liu, Longjian | Zhou, Ji-Chang
Four most concerned heavy metal pollutants, arsenic, cadmium, lead, and mercury may share common mechanisms to induce metabolic syndrome (MetS). However, recent studies exploring the relationships between MetS and metal exposure presented inconsistent findings. We aimed to clarify the relationship between heavy metal exposure biomarkers and MetS using a meta-analysis and systematic review approach. Literature search was conducted in international and the Chinese national databases up to June 2020. Of selected studies, we extracted the relevant data and evaluated the quality of each study’s methodology. We then calculated the pooled effect sizes (ESs), standardized mean differences (SMDs), and their 95% confidence intervals (CIs) using a random-effect meta-analysis approach followed by stratification analyses for control of potential confounders. Involving 55,536 participants, the included 22 articles covered 52 observational studies reporting ESs and/or metal concentrations on specific metal and gender. Our results show that participants with MetS had significantly higher levels of heavy metal exposure [pooled ES = 1.16, 95% CI: 1.09, 1.23; n = 42, heterogeneity I² = 75.6%; and SMD = 0.22, 95% CI: 0.15, 0.29; n = 32, I² = 94.2%] than those without MetS. Pooled ESs in the subgroups stratified by arsenic, cadmium, lead, and mercury were 1.04 (95% CI: 0.97, 1.10; n = 8, I² = 61.0%), 1.10 (0.95, 1.27; 11, 45.0%), 1.21 (1.00, 1.48; 12, 82.9%), and 1.26 (1.06, 1.48; 11, 67.7%), respectively. Pooled ESs in the subgroups stratified by blood, urine, and the other specimen were 1.22 (95% CI: 1.08, 1.38; n = 26, I² = 75.8%), 1.06 (1.00, 1.13; 14, 58.1%), and 2.41 (1.30, 4.43; 2, 0.0%), respectively. In conclusion, heavy metal exposure was positively associated with MetS. Further studies are warranted to examine the effects of individual metals and their interaction on the relationship between MetS and heavy metals.
Показать больше [+] Меньше [-]Oxidative stress activates the Nrf2-mediated antioxidant response and P38 MAPK pathway: A possible apoptotic mechanism induced by BDE-47 in rainbow trout (Oncorhynchus mykiss) gonadal RTG-2 cells
2021
Zhou, Zhongyuan | Zhou, Bin | Chen, Hongmei | Lu, Keyu | Wang, You
Our previous study showed that 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47), the most biotoxic polybrominated diphenyl ether (PBDE) in the marine environment, induced apoptosis in rainbow trout gonadal RTG-2 cells. This effect occurred via ROS- and Ca²⁺-mediated apoptotic pathways, but the exact mechanism remains unknown. Therefore, in the present study, the possible mechanism was examined from the perspective of ROS-induced oxidative stress. The results showed that BDE-47 exposure significantly elevated the malondialdehyde (MDA) contents and the intracellular GSH/GSSG ratio, and the GSH-related enzymes were greatly altered, indicating alteration of the redox status and occurrence of oxidative stress. The mRNA levels of nuclear factor E2-related factor 2 (Nrf2) and its downstream genes were simultaneously greatly elevated. The p38 mitogen-activated protein kinase (MAPK) signaling pathway was also found to be induced by BDE-47 exposure. The addition of SB203580, a p38 MAPK inhibitor resulted in decreased apoptosis. In addition, supplementation with Ca²⁺ inhibitors BAPTA-AM positively affected p38 MAPK activation. Taken together, BDE-47 exposure resulted in the occurrence of oxidative stress and initiated the Nrf2-mediated antioxidant response. Subsequently, the altered redox status induced p38 MAPK activation, which played a pivotal role in the cellular apoptosis of RTG-2 cells.
Показать больше [+] Меньше [-]PM1 chemical composition and light absorption properties in urban and rural areas within Sichuan Basin, southwest China
2021
Zhao, Suping | Yin, Daiying | Yu, Ye | Kang, Shichang | Ren, Xiaolin | Zhang, Jing | Zou, Yong | Qin, Dahe
Sichuan Basin is encircled by high mountains and plateaus with the heights ranging from 1 km to 3 km, and is one of the most polluted regions in China. However, the dominant chemical species and light absorption properties of aerosol particles is still not clear in rural areas. Chemical composition in PM₁ (airborne particulate matter with an aerodynamic diameter less than 1 μm) and light-absorbing properties were determined in Chengdu (urban) and Sanbacun (rural) in western Sichuan Basin (WSB), Southwest China. Carbonaceous aerosols and secondary inorganic ions (NH₄⁺, NO₃⁻ and SO₄²⁻) dominate PM₁ pollution, contributing more than 85% to PM₁ mass at WSB. The mean concentrations of organic and elemental carbon (OC, EC), K⁺ and Cl⁻ are 19.69 μg m⁻³, 8.00 μg m⁻³, 1.32 μg m⁻³, 1.16 μg m⁻³ at the rural site, which are 26.2%, 65.3%, 34.7% and 48.7% higher than those at the urban site, respectively. BrC (brown carbon) light absorption coefficient at 405 nm is 63.90 ± 27.81 M m⁻¹ at the rural site, contributing more than half of total absorption, which is about five times higher than that at urban site (10.43 ± 4.74 M m⁻¹). Compared with secondary OC, rural BrC light absorption more depends on primary OC from biomass and coal burning. The rural MAEBᵣC (BrC mass absorption efficiency) at 405 nm ranges from 0.6 to 5.1 m² g⁻¹ with mean value of 3.5 ± 0.8 m² g⁻¹, which is about three times higher than the urban site.
Показать больше [+] Меньше [-]Experimental and DFT investigation on N-functionalized biochars for enhanced removal of Cr(VI)
2021
Zhao, Nan | Zhao, Chuanfang | Liu, Kunyuan | Zhang, Weihua | Tsang, Daniel C.W. | Yang, Zaikuan | Yang, Xixiang | Yan, Bofang | Morel, J. L. (Jean-Louis) | Qiu, Rongliang
In this study, N-functionalized biochars with varied structural characteristics were designed by loading poplar leaf with different amounts of urea at 1:1 and 1:3 ratios through pyrolysis method. The addition of urea significantly increased the N content of biochar and facilitated the formation of amine (-NH-, -NH₂), imine (-HCNH), benzimidazole (-C₇H₅N₂), imidazole (-C₃H₃N₂), and pyrimidine (-C₄H₃N₂) groups due to substitution reaction and Maillard reaction. The effect of pH on Cr(VI) removal suggested that decrease in solution pH favored the formation of electrostatic attraction between the protonated functional groups and HCrO₄⁻. And, experimental and density functional theory study were used to probe adsorption behaviors and adsorption mechanism which N-functionalized biochars interacted with Cr(VI). The protonation energy calculations indicated that N atoms in newly formed N-containing groups were better proton acceptors. Adsorption kinetics and isotherm experiments exhibited that N-functionalized biochars had greater removal rate and removal capacity for Cr(VI). The removal rate of Cr(VI) on N-functionalized biochar was 10.5–15.5 times that of untreated biochar. Meanwhile, N-functionalized biochar of NB3 with the largest number of adsorption sites for -C₇H₅N₂, -NH₂, -OH, -C₃H₃N₂, and phthalic acid (-C₈H₅O₄) exhibited the supreme adsorption capacity for Cr(VI) through H bonds and the highest adsorption energy was −5.01 kcal/mol. These mechanistic findings on the protonation and adsorption capacity are useful for better understanding the functions of N-functionalized biochars, thereby providing a guide for their use in various environmental applications.
Показать больше [+] Меньше [-]Characteristics and sources of amine-containing particles in the urban atmosphere of Liaocheng, a seriously polluted city in North China during the COVID-19 outbreak
2021
Li, Zheng | Zhou, Ruiwen | Wang, Yiqiu | Wang, Gehui | Chen, Min | Li, Yuanyuan | Wang, Yachen | Yi, Yanan | Hou, Zhanfang | Guo, Qingchun | Meng, Jingjing
The Chinese government issued an unprecedentedly strict lockdown policy to control the spread of the novel coronavirus disease 2019 (COVID-19), significantly mitigating air pollution because of the dramatic reduction of industrial and traffic emissions. To explore the impact of COVID-19 lockdown (LCD) on organic aerosols, the mixing states and evolution processes of amine-containing particles were studied using a single particle aerosol mass spectrometer from January to March 2020 in Liaocheng, which is a seriously polluted city in North China. The counts and percentages of amine-containing particles in total obtained particles during the pre-LCD (547832, 29.8 %) were higher than those during the LCD (283983, 20.7 %) and post-LCD (102026, 18.4 %), mainly due to the reduced emission strength of amines and suppressed gas-to-particle partitioning of amines during the LCD and post-LCD. ⁷⁴(C₂H₅)₂NH₂⁺ was the most abundant amine marker, which accounted for 98.2 %, 98.4 %, and 96.7 % of all amine-containing particles during the pre-LCD, LCD, and post-LCD, respectively. Correlation analysis and temporal variations indicated that the gas-to-particle partitioning of amines was facilitated by the stronger acidic environment and lower temperature, while the effect of RH and aerosol liquid water content was minor. The A-OC particles were the most abundant type (accounting for ~40 %) throughout the observation period. The temporal profiles and correlation analysis suggested that the impact of the increased O₃ on the amines and their oxidation products (e.g., trimethylamine oxide) was minor. The identified particle types, correlation analysis, and the potential source contribution function results implied that the amine-containing particles were mainly derived from local and surrounding sources during the LCD, while those were mainly affected by long-range transport during the pre-LCD and post-LCD. Our results could deepen the comprehension of the sources and atmospheric processing of amines in the urban area of North China during the COVID-19 outbreak.
Показать больше [+] Меньше [-]Production and resource utilization of flue gas desulfurized gypsum in China - A review
2021
Liu, Sen | Liu, Wei | Jiao, Fen | Qin, Wenqing | Yang, Congren
Flue gas desulfurized gypsum (FGD gypsum), mainly originates from thermal power plants, smelters, and large-scale enterprise boilers. This article reviews the production in China and the latest beneficial utilizations of FGD gypsum. China is a large coal-consuming country and has always had serious SO₂ emissions. Therefore, the Chinese government has implemented a large number of desulfurization measures since 2006. With continually increasing energy consumption and increasingly stringent environmental requirements, the production of FGD gypsum has exceeded 10⁸ tons. The basic properties and the current beneficial applications of FGD gypsum are summarized here. The practical application of FGD gypsum in four fields—building materials, agriculture, material synthesis, and soil—and its impact on the environment, are analyzed. Finally, a new direction is proposed for the future utilization of FGD gypsum.
Показать больше [+] Меньше [-]Prioritization and environmental risk assessment of pharmaceuticals mixtures from Brazilian surface waters
2021
Reis, Eduarda O. | Santos, Lucilaine V.S. | Lange, Liséte C.
The present study provides an environmental risk assessment of the pharmaceutical mixtures detected in Brazilian surface waters, based on Toxic Units and Risk Quotients. Furthermore, the applicability of a previously proposed prioritization methodology was evaluated. The pharmaceuticals were classified according to their properties (occurrence, persistence, bioaccumulation, and toxicity) and the contribution of the prioritized compounds to the mixture risk was determined. The mixture risk quotients, based on acute and chronic toxicity data, often exceed 1, demonstrating a potential risk for the environment. While algae were most affected by acute effects, fish were the most sensitive organism to sublethal effects. The lipid regulator atorvastatin was the main driver for the mixture risk. Despite their lower occurrence, the antibiotics norfloxacin and enrofloxacin were critical compounds for the algae group. The prioritized pharmaceuticals contributed to more than 75% of the mixture risk in most of cases, indicating the applicability of prioritization approaches for risk management.
Показать больше [+] Меньше [-]