Уточнить поиск
Результаты 841-850 из 1,299
Field Study of Salt Balance of a Land Application System
2011
Duan, Runbin | Fedler, Clifford B. | Sheppard, Christopher D.
Wastewater land application is a cost-effective method to treat and dispose wastewater; however, it may cause soil salinization. Salt mass balance and the potential soil salinization caused by the wastewater land application were investigated in the crop root zone in a wastewater land application system at the City of Littlefield, TX, USA from October 7, 2005 to September 28, 2007 using a lysimeter system. This study showed that, after 2 years of wastewater land application, the ranges of soil salinity were still lower than the threshold (8,500 μS/cm) for Bermuda grass assuming a 10% yield reduction. The leached salt mass showed large spatial and temporal variation. The average values of electrical conductivity of the saturated paste extract of the soil samples increased from 1,433 μS/cm in June 2006 to 1,840 μS/cm in June 2007. The average values of the soil sodium adsorption ratio between June 2006 and June 2007 increased from 11 to 14 resulting in a potential risk of soil dispersion and decreasing the soil infiltration rate. Although the measured leaching fractions in nearly all sampling periods, except one, were higher than the leaching requirement, salt accumulations in the root zone were still found with only two exceptions. Since the time required for reaching equilibrium between cumulative salt mass input and cumulative salt mass output varies from 1 year to a few years, or even longer, the long-term investigation is recommended for the study of salt mass balance in the root zone of this wastewater land application system.
Показать больше [+] Меньше [-]Protective Roles of Calcium Channel Blocker Against Cadmium-Induced Physiological Stress in Freshwater Teleost Oncorhynchus mykiss
2011
Li, Zhi-Hua | Li, Ping | Randak, Tomas
The roles of verapamil (VRP), a calcium channel blocker, on cadmium-induced physiological stress in freshwater teleost Oncorhynchus mykiss were investigated in this study. Forty-eight juvenile rainbow trout were divided randomly into four groups, i.e., control group, VRP group (100 μg/L VRP), Cd group (50 μg/L Cd2+), and VRP + Cd group (100 μg/L VRP + 50 μg/L Cd2+). After 1-week exposure, oxidative stress indices (lipid peroxidation and carbonyl protein) and antioxidant parameters (superoxide dismutase, glutathione reductase, glutathione peroxidase, and reduced glutathione) were measured in gill and liver of all tested fish. Additionally, the behavioral changes were recorded during the experimental period. Compared with the control, cadmium-induced stress was apparent as reflected by a serious oxidative stress in gill and liver tissues, inhibited branchial antioxidant parameters, and induced hepatic antioxidant responses, as well as abnormal behaviors observed. In the VRP + Cd group, the antioxidant defense system of fish returned to the control level, and the fish behavioral abnormalism markedly decreased. The present results suggested that VRP could reduce the cadmium-induced physiological stress in rainbow trout and provided further evidence that Cd2+ uptake through Ca2+ transport pathways in freshwater teleost.
Показать больше [+] Меньше [-]Processes in Pathogenic Biocolloidal Contaminants Transport in Saturated and Unsaturated Porous Media: A Review
2011
Sen, Tushar Kanti
There are several classes of subsurface colloids, abiotic and biotic. Basically, small particles of inorganic, organic and pathogenic biocolloids variety exist in natural subsurface system. Transport of these pathogenic biocolloidal contaminants (Viruses, bacteria and protozoa) pose a great risk in water resources and have caused large outbreaks of waterborne diseases. Biocolloid transport processes through saturated and unsaturated porous media is of significant interest, from the perspective of protection of groundwater supplies from contamination, assessment of risk from pathogens in groundwater and for the design of better water treatment systems to remove biocolloids from drinking water supplies This paper has reviewed the large volume of work that has already been done and the progress that has been made towards understanding the various basic multi-processes to predicting the biocolloid transport in saturated and unsaturated porous media. There are several basic processes such as physical, chemical and biological processes which are important in biocolloid transport. The physical processes such as advection, dispersion, diffusion, straining and physical filtration, adsorption and biological processes such as growth/decay processes and include active adhesion/detachment, survival and chemotaxis are strongly affected on biocolloid transport in saturated and unsaturated porous media. The unsaturated zone may play an important role in protecting aquifers from biocolloidal contamination by retaining them in the solid phase during their transport through the zone. Finally, author here highlighted the future research direction based on his critical review on biocolloid transport in saturated and unsaturated porous media.
Показать больше [+] Меньше [-]Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiata
2011
Sen, Tushar Kanti | Afroze, Sharmeen | Ang, H. M.
The kinetics and mechanism of methylene blue adsorption onto raw pine cone biomass (Pinus radiata) was investigated under various physicochemical parameters. The extent of the methylene blue dye adsorption increased with increases in initial dye concentration, contact time and solution pH but decreases with the amount of adsorbent, salt concentration and temperature of the system. Overall the kinetic studies showed that the methylene blue adsorption process followed pseudo-second-order kinetics among various kinetic models tested. The different kinetic parameters including rate constant, half-adsorption time and diffusion coefficient are determined at different physicochemical conditions. Equilibrium data were best represented by Langmuir isotherm among Langmuir and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity of pine cone biomass was 109.89 mg/g at 30°C. The value of separation factor, R L, from Langmuir equation and Freundlich constant, n, both give an indication of favourable adsorption. Thermodynamic parameters such as standard Gibbs free energy (∆G 0), standard enthalpy (∆H 0), standard entropy (∆S 0) and the activation energy (A) were calculated. A single-stage batch absorber design for the methylene blue adsorption onto pine cone biomass has been presented based on the Langmuir isotherm model equation.
Показать больше [+] Меньше [-]Effect of Environmentally Friendly Amendment on a Newly Found Accumulator Kalimeris integrifolia Turcz. ex DC. Phytoremediating Cd-Contaminated Soil
2011
Wei, Shuhe | Zhan, Jie | Zhou, Qixing | Niu, Rongcheng | Li, Yunmeng | Wang, Shanshan
Pot culture experiments were conducted to study the remediation potentials of a newly found accumulator Kalimeris integrifolia Turcz. ex DC. under different cadmium (Cd) concentrations with same fertilizer level, as well as the same Cd dose under different fertilizer doses. At medium (100Â g/kg) chicken manure level, Cd concentrations in roots, stems, leaves, inflorescences, and shoots of K. integrifolia grown in the soils contaminated with 2.5, 5, 10, and 25Â mg/kg Cd significantly decreased (pâ<â0.05) in average by 23.8%, 29.9%, 24.0%, 30.1%, and 38.6%, respectively, when compared to those of the pots without addition of chicken manure. In contrast, the medium urea amendment level (1Â g/kg) showed no effect on the bioaccumulated Cd concentrations of K. integrifolia regardless of the spiked Cd doses. However, Cd extraction capacities (micrograms per pot) of K. integrifolia shoots were significantly increased (pâ<â0.05) due to the gain in biomass (more than one- to twofolds) by the soil fertilizing effect of urea and chicken manure. Particularly, Cd extraction capacities (micrograms per pot) of K. integrifolia shoots amended by urea were higher than that of chicken manure. Under the condition of 25Â mg/kg Cd addition, shoot biomasses of K. integrifolia were significantly increased (pâ<â0.05) with the amendment of chicken manure (50, 100, and 200Â g/kg) and urea (0.5, 1, and 2Â g/kg). As a result, the Cd extraction capacities (micrograms per pot) were increased in treatments even though soil extractable Cd concentrations were significantly decreased (pâ<â0.05) by amendment with chicken manure and maintained by urea addition. For practical application concerns, chicken manure is better used as phytostabilization amendment owing to its reducing role to extractable heavy metal in soil, and urea is better for phytoextraction.
Показать больше [+] Меньше [-]Effect of Abiotic and Biotic Factors on the Photo-Induced Production of Dissolved Gaseous Mercury
2011
Oh, Sehee | Kim, Moon-Kyung | Lee, Young-Min | Zoh, Kyung-Duk
This study was conducted to evaluate the contribution of environmental factors such as solar radiation and dissolved organic matter (DOM) on the photo-induced dissolved gaseous mercury (DGM) production through laboratory experiments using field water samples collected from wetlands. DGM production was more significantly influenced by UVB intensity than UVA. DGM formation was also significantly affected by DOM chemical structure/composition rather than its concentration. Increasing NO3 − concentration limited DGM production, but photo-induced Hg oxidation stimulated by NO3 − would possibly occur when the NO3 − level is more than twice the DOC level. The addition of phosphorus into the field water samples induced a slight increase of DGM production; however, the addition of nitrogen decreased DGM formation, suggesting that an increase of limiting nutrients in water may promote biotic DGM production. Experiments using a Selenastrum capricornutum monoculture solution showed that cell density had a positive effect on DGM production. Moreover, the difference in DGM production between filtered and unfiltered samples showed that S. capricornutum significantly produced biotic DGM under UVA irradiation. Finally, our results imply that environmental factors such as light intensity, DOM sources, and site-specific microorganisms can significantly affect photo-induced Hg transformation.
Показать больше [+] Меньше [-]Removal of Nitrogen and Phosphorus from Effluent of a Secondary Wastewater Treatment Plant Using a Pond-Marsh Wetland System
2011
Kim, Dong-Gill | Park, Joohyun | Lee, Dowon | Kang, Hojeong
A constructed wetland composed of a pond- and a marsh-type wetland was employed to remove nitrogen (N) and phosphorus (P) from effluent of a secondary wastewater treatment plant in Korea. Nutrient concentrations in inflow water and outflow water were monitored around 50 times over a 1-year period. To simulate N and P dynamics in a pond- and a marsh-type wetland, mesocosm experiments were conducted. In the field monitoring, ammonium (NH ₄ ⁺ ) decreased from 4.6 to 1.7 mg L⁻¹, nitrate (NO ₃ ⁻ ) decreased from 6.8 to 5.3 mg L⁻¹, total N (TN) decreased from 14.6 to 10.1 mg L⁻¹, and total P (TP) decreased from 1.6 to 1.1 mg L⁻¹. Average removal efficiencies (loading basis) for NO ₃ ⁻ , NH ₄ ⁺ , TN, and TP were over 70%. Of the environmental variables we considered, water temperature exhibited significant positive correlations with removal rates for the nutrients except for NH ₄ ⁺ . Results from mesocosm experiments indicated that NH ₄ ⁺ was removed similarly in both pond- and marsh-type mesocosms within 1 day, but that NO ₃ ⁻ was removed more efficiently in marsh-type mesocosms, which required a longer retention time (2-4 days). Phosphorus was significantly removed similarly in both pond- and marsh-type mesocosms within 1 day. Based on the results, we infer that wetland system composed of a pond- and a marsh-type wetland consecutively can enhance nutrient removal efficiency compared with mono-type wetland. The reason is that removal of NH ₄ ⁺ and P can be maximized in the pond while NO ₃ ⁻ requiring longer retention time can be removed through both pond and marsh. Overall results of this study suggest that a constructed wetland composed of a pond- and a marsh-type wetland is highly effective for the removal of N and P from effluents of a secondary wastewater treatment plant.
Показать больше [+] Меньше [-]Seasonal Variation of Mercury Associated with Different Phytoplankton Size Fractions in Lahontan Reservoir, Nevada
2011
Carroll, Rosemary W. H. | Memmott, Jeramie | Warwick, John J. | Fritsen, Christian H. | Bonzongo, Jean-Claude J. | Acharya, Kumud
Sampling is conducted during 2006 in Lahontan Reservoir, Nevada to investigate seasonal variation of total mercury (THg) and methylmercury (MeHg) partitioning in different phytoplankton size fractions as a function of point source (fluvial) mercury (Hg) loads, reservoir residence time, and algal growth. Carson River Hg inputs into the reservoir are extremely dynamic with spring loads two orders of magnitude larger than summer loads. Chlorophyll a measurements show two periods of algal growth. A small amount of algal growth occurs March to May. A second more substantial bloom occurs in the late summer, which is dominated by large, filamentous algae. THg concentrations (C b) and partitioning coefficients (K d) in total suspended particulate matter (SPM) are highest when fluvial inputs of Hg-contaminated sediment are large and are not necessarily associated with living biomass. However, MeHg K d in the small size fraction is indirectly related to fluvial loads and more strongly associated with living biomass in the later portion of the summer when algal growth occurs and reservoir residence times are longer. Data suggest size distinction is important to MeHg partitioning in the reservoir. Lumping all sizes into a single SPM sample will bias the analysis toward low MeHg C b and low MeHg K d in late summer when Aphanizomenon flos-aquae dominates the phytoplankton assemblage.
Показать больше [+] Меньше [-]Effects of Feral Pig (Sus scrofa) Exclusion on Enterococci in Runoff from the Forested Headwaters of a Hawaiian Watershed
2011
Dunkell, Dashiell O. | Bruland, Gregory L. | Evensen, Carl I. | Walker, Mark J.
The role feral pigs (Sus scrofa) as a source of fecal contamination in Pacific Island ecosystems is not well understood. This study investigated the effects of feral pigs on enterococci (ENT) in runoff and soils of a Hawaiian forest. Seven sites were established with paired fenced/unfenced runoff plots in the Manoa watershed. Runoff was collected monthly from these plots after rain events from June 2008 to April 2009; soil ENT at each plot were also quantified. ENT in runoff were highly variable ranging from below the detection limit to >4.38 log10 most probable number (MPN) 100Â mL−1. A repeated measures ANOVA found no overall fencing effects. This ANOVA did reveal a month by site interaction, indicating that while ENT in runoff were the highest in the wet season, this was not consistent across all sites. Soil ENT ranged from 14 to 511 MPNÂ g−1 and differed among sites but not between fencing treatments. The only variables that were significantly correlated to ENT in runoff were runoff volume and soil ENT; slope, throughfall, soil moisture, bare soil cover, and total suspended solids in runoff were not correlated with ENT. While concentrations of ENT in runoff were highly variable across the months and sites, these forested headwaters did serve as sources of ENT to downstream ecosystems throughout the year. To minimize effects on human health, we recommend that public authorities employ greater warnings (i.e., signage) at streams and beaches in the lower reaches of this and other forested Hawaiian watersheds that are frequently used by both residents and tourists.
Показать больше [+] Меньше [-]Heavy Metals Removal in a Horizontal Rotating Tubular Bioreactor
2011
Rezić, Tonči | Zeiner, Michaela | Šantek, Božidar | Novak, Srđan
Mixed microbial culture was isolated from heavy metal-contaminated ground soils located inside iron, vinyl and cement factory area. Isolated mixed microbial culture was used for the heavy metal ions (Fe²⁺, Cu²⁺, Ni²⁺ and Zn²⁺) removal process in horizontal rotating tubular bioreactor (HRTB). In this research, the effect of bioreactor process parameters on the bioprocess dynamics in the HRTB was studied. Results of this research have shown that profiles of heavy metals concentration were gradually reduced along HRTB at all combinations of bioreactor process parameters [inflow rates (0.5-2.0 L h⁻¹) and rotation speed (5-30 min⁻¹)]. Hydrodynamic conditions and biomass sorption capacity have main impact on the metal ions removal efficiency that was varied in the range of 38.1% to 95.5%. Notable pH gradient (cca 0.7 pH unit) along the HRTB was only observed at the inflow rate of 2.0 L h⁻¹. On the basis of obtained results, it is clear that medium inflow rate (F) has higher impact on the heavy metal removal process than bioreactor rotation speed (n) due to the fact that increase of inflow rate was related to the reduction of equilibrium time for all examined metal ions. Furthermore, equilibrium times for all metal ions are significantly shorter than medium residence times at all examined combinations of bioreactor process parameters. The main impact on the biofilm sorption capacity has covalent index of metal ions and biofilm volumetric density. The sorption capacity of suspended microbial biomass is closely related to its concentration. Results of this research have also shown that the removal of heavy metals ion can be successfully conducted in an HRTB as a one-step process.
Показать больше [+] Меньше [-]