Уточнить поиск
Результаты 841-850 из 6,473
Control of internal phosphorus release from sediments using magnetic lanthanum/iron-modified bentonite as active capping material
2020
Lin, Jianwei | Zhao, Yuying | Zhan, Yanhui | Wang, Yan
The non-magnetic capping materials are difficult to be recycled from the water bodies after their application, leading to the increase in the cost of the sediment remediation. To address this issue, a capping material, i.e., magnetic lanthanum/iron-modified bentonite (M-LaFeBT) was prepared by loading lanthanum onto a magnetic iron-modified bentonite (M-FeBT) and used to control the internal phosphorus (P) loading in this study. To determine the capping efficiency and mechanism of M-LaFeBT, the impact of M-LaFeBT and M-FeBT capping on the mobilization of P in sediments was investigated, and the stabilization of P bound by the M-LaFeBT and M-FeBT capping layers was evaluated. Results showed that M-LaFeBT possessed good magnetic property with a saturated magnetization of 14.9 emu/g, and exhibited good phosphate adsorption ability with a maximum monolayer sorption capacity (QMAX) of 14.3 mg P/g at pH 7. Moreover, M-LaFeBT capping tremendously reduced the concentration of soluble reactive P (SR-P) in the overlying water (OL-water), and the reduction efficiencies were 94.7%–97.4%. Furthermore, M-LaFeBT capping significantly decreased the concentration of SR-P in the pore water and DGT (diffusive gradient in thin films)-labile P in the profile of OL-water and sediment. Additionally, most of P bound by the M-LaFeBT capping layer (approximately 77%) was stable under natural pH and reducing conditions. The phosphate adsorption ability for M-LaFeBT was much higher than that for M-FeBT, and the QMAX value for the former was 4.86 times higher than that for the latter. M-LaFeBT capping gave rise to a higher reduction of DGT-labile concentration in the profile of OL-water and sediment than M-FeBT capping. The P adsorbed by the M-LaFeBT capping layer was more stable than that by the M-FeBT capping layer. Results of this study demonstrate that M-LaFeBT is promising for utilization as an active capping material to intercept sedimentary P release into OL-water.
Показать больше [+] Меньше [-]Perfluorooctane sulfonate exposure alters sexual behaviors and transcriptions of genes in hypothalamic–pituitary–gonadal–liver axis of male zebrafish (Danio rerio)
2020
Bao, Mian | Zheng, Shukai | Liu, Caixia | Huang, Wenlong | Xiao, Jiefeng | Wu, Kusheng
Perfluorooctane sulfonate (PFOS) has been reported to be widely distributed in the environment and wildlife with persistence. PFOS has various biological toxicity, especially disturbing the endocrine system. However, few studies have systematically evaluated its effect on sexual behaviors alteration and reproduction-related genes. This study was performed to assess the effect of PFOS exposure on sexual behaviors and genes in hypothalamic–pituitary–gonadal–liver (HPGL) axis in adult zebrafish.Male adult zebrafish were exposed to PFOS (0, 2, 20, and 200 μg/L) and 5 μg/L estradiol (E₂) continuously for 21 days. Sexual behaviors were analyzed by zebrafish behavior tracking system and the mRNA levels of HPGL-related genes was detected by RT-qPCR.Body weight of the fish was increased in 2, 200 μg/L PFOS and E₂ groups, and body length was increased with exposure to 2 μg/L PFOS and E₂. The hepatic-somatic index was decreased significantly after 2 and 20 μg/L PFOS treatments. Highest PFOS (200 μg/L) and E₂ exposure impaired standard zebrafish sexual behaviors significantly such as chasing, nose-tail and tail-touching. In brains, the genes gonadotropin-releasing hormone (GnRH), gonadotropin-releasing hormone receptor (GnRHr) were down-regulated with exposure to PFOS with linear trend and E₂ exposure, and follicle-stimulating hormone and luteinizing hormone were also down-regulated with exposure to 20 and 200 μg/L PFOS. In livers, the genes vitellogenin 1 and 3 were upregulated with some concentrations of PFOS and E₂, but estrogenic receptor α, β2 were upregulated in any concentration of PFOS and E₂. In testes, the expressions of follicle-stimulating hormone receptor, luteinizing hormone receptor, and androgen receptor genes were all significantly down-regulated with any exposure concentration of PFOS and E₂.PFOS may alter the zebrafish reproductive system by disrupting endocrine activity and impairing sexual behaviors.
Показать больше [+] Меньше [-]Enrichment of imidacloprid and its metabolites in lizards and its toxic effects on gonads
2020
Yang, Lu | Shen, Qiuxuan | Zeng, Tao | Li, Jianzhong | Li, Wei | Wang, Yinghuan
Soil contaminants can cause direct harm to lizards due to their regular swallowing of soil particles. As the world’s fastest growing insecticide with long half-life in soil, the endocrine disrupting effect of neonicotinoids on lizards deserves more attention. In this report, we assessed the endocrine disrupting effect of imidacloprid on Eremias argus during 28 days of continuous exposure. Among the imidacloprid and its metabolites, only the metabolite 6-chloropyridic acid had a significant accumulation in the gonads and was positively correlated with its blood concentration. Imidacloprid might cause endocrine disrupting effects on lizards in two ways. First, the desnitro metabolites of imidacloprid could accumulate in the brain, inhibited the secretion of gonadotropin-releasing hormone, and ultimately affected the feedback regulation of hypothalamic-pituitary-gonadal related hormones. Secondly, imidacloprid severely inhibited the gene expression of the corresponding enzymes in the gonadal anti-oxidative stress system, causing histological damage to the gonads and ultimately affecting gonadal function. Specifically, exposure to imidacloprid resulted in abnormal arrangement of spermatogenic epithelial epithelium, hyperplasia of epididymal wall, and oligospermia of male lizard. Meanwhile, gene expressions of cyp17, cyp19, and hsd17β were severely inhibited in the imidacloprid exposure group, consistent with decreased levels of testosterone and estradiol in plasma. Imidacloprid exposure could cause insufficient androgen secretion and less spermatogenesis in male lizards. The risk of imidacloprid exposure to female lizards was not as severe as that of male lizards, but it still inhibited the expression of cyp19 in the ovaries and led to a decrease in the synthesis of estradiol. This study firstly reported the endocrine disruption of imidacloprid to lizards, providing new data for limiting the use of neonicotinoids.
Показать больше [+] Меньше [-]Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China
2020
Wang, Jingzhe | Shi, Tiezhu | Yu, Danlin | Teng, Dexiong | Ge, Xiangyu | Zhang, Zipeng | Yang, Xiaodong | Wang, Hanxi | Wu, Guofeng
In arid and semi-arid regions, water-quality problems are crucial to local social demand and human well-being. However, the conventional remote sensing-based direct detection of water quality parameters, especially using spectral reflectance of water, must satisfy certain preconditions (e.g., flat water surface and ideal radiation geometry). In this study, we hypothesized that drone-borne hyperspectral imagery of emergent plants could be better applied to retrieval total nitrogen (TN) concentration in water regardless of preconditions possibly due to the spectral responses of emergent plants on nitrogen removal and water purification. To test this hypothesis, a total of 200 groups of bootstrap samples were used to examine the relationship between the extracted TN concentrations from the drone-borne hyperspectral imagery of emergent plants and the experimentally measured TN concentrations in Ebinur Lake Oasis using four machine learning (ML) models (Partial Least Squares (PLS), Random Forest (RF), Extreme Learning Machine (ELM), and Gaussian Process (GP)). Through the introduction of the fractional order derivative (FOD), we build a decision-level fusion (DLF) model to minimize the regression results’ biases of individual ML models. For individual ML model, GP performed the best. Still, the amount of uncertainty in individual ML models renders their performance to be subpar. The introduction of the DLF model greatly minimizes the regression results’ biases. The DLF model allows to reduce potential uncertainties without sacrificing accuracy. In conclusion, the spectral response caused by nitrogen removal and water purification on emergent plants could be used to retrieve TN concentration in water with a DLF model framework. Our study offers a new perspective and a basic scientific support for water quality monitoring in arid regions.
Показать больше [+] Меньше [-]Simultaneous immobilization of the cadmium, lead and arsenic in paddy soils amended with titanium gypsum
2020
Zhai, Weiwei | Dai, Yuxia | Zhao, Wenliang | Yuan, Honghong | Qiu, Dongsheng | Chen, Jingpan | Gustave, Williamson | Maguffin, Scott Charles | Chen, Zheng | Liu, Xingmei | Tang, Xianjin | Xu, Jianming
In situ immobilization of heavy metals in contaminated soils using industrial by-products is an attractive remediation technique. In this work, titanium gypsum (TG) was applied at two levels (TG-L: 0.15% and TG-H: 0.30%) to simultaneously reduce the uptake of cadmium (Cd), lead (Pb) and arsenic (As) in rice grown in heavy metal contaminated paddy soils. The results showed that the addition of TG significantly decreased the pH and dissolved organic carbon (DOC) in the bulk soil. TG addition significantly improved the rice plants growth and reduced the bioavailability of Cd, Pb and As. Particularly, bioavailable Cd, Pb and As decreased by 35.2%, 38.1% and 38.0% in TG-H treatment during the tillering stage, respectively. Moreover, TG application significantly reduced the accumulation of Cd, Pb and As in brown rice. Real-time PCR analysis demonstrated that the relative abundance of sulfate-reducing bacteria increased with the TG application, but not for the iron-reducing bacteria. In addition, 16S rRNA sequencing analysis revealed that the relative abundances of heavy metal-resistant bacteria such as Bacillus, Sulfuritalea, Clostridium, Sulfuricella, Geobacter, Nocardioides and Sulfuricurvum at the genus level significantly increased with the TG addition. In conclusion, the present study implied that TG is a potential and effective amendment to immobilize metal(loid)s in soil and thereby reduce the exposure risk of metal(loid)s associated with rice consumption.
Показать больше [+] Меньше [-]Spatiotemporal patterns and drivers of soil contamination with heavy metals during an intensive urbanization period (1989–2018) in southern China
2020
Li, Cheng | Sanchez, Georgina M. | Wu, Zhifeng | Cheng, Jiong | Zhang, Siyi | Wang, Qi | Li, Fangbai | Sun, Ge | Meentemeyer, Ross K.
This three-decade long study was conducted in the Pearl River Delta (PRD), a rapidly urbanizing region in southern China. Extensive soil samples for a diverse land uses were collected in 1989 (113), 2005 (1384), 2009 (521), and 2018 (421) for heavy metals of As, Cr, Cd, Cu, Hg, Ni, Pb and Zn. Multiple pollution indices and Structural Equation Models (SEMs) were used in attribution analysis and comprehensive assessments. Data showed that majority of the sampling sites was contaminated by one or more heavy metals, but pollutant concentrations had not reached levels of concerns for food security or human health. There was an increasing trend in heavy metal contamination over time and the variations of soil contamination were site-, time- and pollutant-dependent. Areas with high concentrations of heavy metals overlapped with highly industrialized and populated areas in western part of the study region. A dozen SEMs path analyses were used to compare the relative influences of key environmental factors on soil contamination across space and time. The high or elevated soil contaminations by As, Cr, Ni, Cu and Zn were primarily affected by soil properties during the study period, except 1989–2005, followed by land use patterns. Parent materials had a significant effect on elevated soil contamination of Cd, Cr, Ni, Pb and overall soil pollution during 1989–2005. We hypothesized that other factors not considered in the present study, such as atmospheric deposition, sewage irrigation, and agrochemical uses, may be also important to explain the variability of soil contamination. This study implied that strategies to improve soil physiochemical properties and optimize landscape structures are viable methods to mitigate soil contamination. Future studies should monitor pollutant sources identified by this study to fully understand the causes of heavy metal contamination in rapidly industrialized regions in southern China.
Показать больше [+] Меньше [-]Degradation of 17β-estradiol by Novosphingobium sp. ES2-1 in aqueous solution contaminated with tetracyclines
2020
Li, Shunyao | Liu, Juan | Sun, Kai | Yang, Zhiyao | Ling, Wanting
17β-estradiol (E2) often coexists with tetracyclines (TCs) in wastewater lagoons at intensive breeding farms, threatening the quality of surrounding water bodies. Microbial degradation is vital in E2 removal, but it is unclear how TCs affect E2 biodegradation. This primary study investigated the mechanisms of E2 degradation by Novosphingobium sp. ES2-1 in the presence of TCs and assessed the removal efficiency of E2 by strain ES2-1 in natural waters containing TCs. E2 biodegradation was unaffected at TCs concentrations below 0.1 mg L⁻¹ yet significantly inhibited at TCs above 10 mg L⁻¹. As elevation of TCs, E2 biodegradation rate constant decreased, and the biodegradation kinetics equation gradually deviated from the pseudo-first-order dynamics model. Importantly, the presence of TCs, especially at high-level concentrations, significantly hindered E2 ring-opening process but promoted the condensation of some phenolic ring-opening products with NH₃, thereby increasing the abundance of pyridine derivatives, which were difficult to decompose over time. Additionally, strain ES2-1 could remove 52.1–100% of nature estrogens in TCs-contaminated natural waters within 7 d. Results revealed the mechanisms of TCs in E2 biodegradation and the performance of a functional strain in estrogen removal in realistic TCs-contaminated aqueous solution.
Показать больше [+] Меньше [-]Comprehensive investigation and risk study on pyrrolizidine alkaloid contamination in Chinese retail honey
2020
He, Yisheng | Zhu, Lin | Ma, Jiang | Wong, Lailai | Zhao, Zhongzhen | Ye, Yang | Fu, Peter P. | Lin, Ge
Pyrrolizidine alkaloids (PAs) are common phytotoxins. We performed the first comprehensive investigation on PA contamination in Chinese honeys. LC-MS analysis revealed that 58% of 255 honey samples purchased from 17 regions across Mainland China and Taiwan contained PAs with total content ranging over 0.2–281.1 μg/kg. Monocrotaline (from Crotalaria spp), a PA never found in honey in other regions, together with echimidine (Echium plantagineum) and lycopsamine (from Senecio spp.), were three predominant PAs in PA-contaminated Chinese honeys. Further, PAs present in honeys were found to have geographically distinct pattern, indicating possible control of such contamination in future honey production. Moreover, we proposed a new risk estimation approach, which considered both content and toxic potency of individual PAs in honeys, and found that 12% of the PA-contaminated Chinese honeys tested might pose potential health risk. This study revealed a high prevalence and potential health risk of PA contamination in Chinese honeys.
Показать больше [+] Меньше [-]Edible size of polyethylene microplastics and their effects on springtail behavior
2020
Kim, Shin Woong | An, Youn-Joo
Many reliable studies have provided evidence of microplastic ingestion by soil organisms. However, further research is required to determine the edible size of microplastics, especially given the ubiquity of microplastics and their adverse effects on the soil environment. Determining the size range of microplastics that can be ingested by soil organisms is crucial for the prediction of the exposure route and toxicity mechanisms of microplastics in soil. Springtails, organisms prevalent in a wide variety of soil ecosystems, can ingest or transport microplastics; however, direct evidence for this has not been reported. To address this knowledge gap, we designed dietary exposure experiments under laboratory conditions, using the springtail species Folsomia candida. The springtails were administered polyethylene microplastics in three different sizes (2, 34, and 66 μm) via their food for a short period of time; we further observed the intestinal presence of microplastics via fluorescence microscopy to determine the maximum edible size. We evaluated the effects of ingested microplastics on springtails by quantifying their moving behavior. The results show that the edible size of microplastics is < 66.0 ± 10.9 μm, and microplastics smaller than this can significantly reduce the velocity and distance of springtail movement by 74% ± 38% compared with the control group. Based on this finding, the broader fate and toxicity of microplastics in soil environments can be estimated. Furthermore, the average velocity and distance of springtail movement decreases in response to microplastic ingestion, highlighting the negative effects of microplastics on soil organisms.
Показать больше [+] Меньше [-]Hydro-chemical and microbiological pollution assessment of irrigation water in Kızılırmak Delta (Turkey)
2020
Şener, Şehnaz | Şener, Erhan | Varol, Simge
The Kızılırmak Delta is one of the most important agricultural production regions and it was included as part of the Ramsar Convention in 1998. The water used in agricultural irrigation is mostly supplied from drainage channels. In the present study, 120 water samples were collected from drainage channels and analyzed to characterize the groundwater chemistry and microbiological contamination. Sea water interface, discharge of sewage, wastewater from agricultural activities and livestock and uncontrolled solid waste landfills were identified as the most important pollutant sources in the delta. Serious microbiological pollution was detected in channel water samples. These results indicate that sewage waters mix with the channel waters in the delta. Also, the correlations of parameters such as EC, TDS, DO, Cl⁻ and SO₄²⁻ indicate that channel waters contain high dissolved minerals. It was concluded that especially agricultural pollution and waste water affects water resources negatively in the region.
Показать больше [+] Меньше [-]