Уточнить поиск
Результаты 851-860 из 1,540
Copper Oxide Nanoparticle-Coated Quartz Sand as a Catalyst for Degradation of an Organic Dye in Water
2012
Ben-Moshe, Tal | Dror, Ishai | Berkowitz, Brian
Copper oxide nanoparticles were immobilized on quartz sand and their catalytic activity for the degradation of an organic dye was investigated. The use of nanoparticles as catalysts for non photo-induced oxidation of water contaminants is relatively new. The CuO catalyst has shown promising results when suspended in free form in batch systems. Because heterogeneous catalysis is often the preferred mode of operation for application of catalytic technology, we studied the effect of immobilization of the nanoparticles on quartz sand in a flow-through system and its implication for the catalytic process. The coated sand was packed in a column and its catalytic activity for the degradation of an organic dye was investigated in a series of flow-through experiments with hydrogen peroxide as the oxidant. Control experiments with uncoated sand were also performed for comparison. The coated sand demonstrated high catalytic ability, achieving complete oxidation of the dye. During the reaction, CO2 was produced, leading to a decrease in the water saturation in the column and reduced contact surface between the nano-CuO catalysts and the dye solution. The degradation was improved by enabling a longer residence time of the dye in the column, yielding up to 85% degradation of the dye. These results suggest that CuO nanoparticle-coated sand is an efficient catalyst for complete degradation of the organic dye.
Показать больше [+] Меньше [-]Comparative Assessment of Al(III) and Cd(II) Biosorption onto Turbinaria conoides in Single and Binary Systems
2012
Vijayaraghavan, K. | Gupta, Sunny | Joshi, Umid Man
The present work investigated the ability of inactive brown seaweed, Turbinaria conoides, to biosorb aluminum(III) and cadmium(II) ions in both single and binary systems. Initial experiments were undertaken to determine the influence of pH and biosorption isotherms of each metallic ion. Owing to the presence of carboxylic groups, T. conoides exhibited high uptake capacity towards Al(III) and Cd(II) through ion-exchange mechanism. In the case of Al(III), T. conoides exhibited maximum biosorption at pH 4 with a capacity of 2.37Â mmol/g, whereas the highest Cd(II) biosorption occurred at pH 5 with a capacity of 0.96Â mmol/g. For both metal ions, T. conoides exhibited fast kinetics. Several models were used to describe isotherm (Langmuir, Freundlich, Redlich-Peterson, and Toth) and kinetic (pseudo-first and pseudo-second order) data. Desorption and reuse of T. conoides biomass in three repeated cycles was successful with 0.1Â M HCl as elutant. In binary systems, the presence of Cd(II) severely affected Al(III) uptake by T. conoides. Compared to single-solute systems, Al(III) uptake was reduced to 56% compared to only 27% for Cd(II). Based on the model parameters regressed from the respective monometal systems, multicomponent Langmuir and Freundlich models were used to predict binary (Al + Cd) system of which the multicomponent Freundlich model was able to describe with good accuracy.
Показать больше [+] Меньше [-]The Impact of Industrial SO2 Pollution on North Bohemia Conifers
2012
Rydval, Miloš | Wilson, Rob
Conifer forests in the Jizerské Mountains, Czech Republic have experienced widespread and long-lasting effects related to industrial SO₂ pollution. To explore the spatial and temporal impact of this phenomenon on Norway spruce stands, a transect of sites was sampled to the southeast of the Polish coal-fired power station Turów. Tree growth at all sites displayed a significant reduction around 1980, which could not be explained by climate alone. However, by incorporating both climate and SO₂ variables in multiple regression models, the chronology trends could be explained well. The lowest growth rates were found to coincide with the period of greatest atmospheric SO₂ concentrations and the degree of suppression decreased with increasing distance from the power station. The period of growth suppression in a Silver fir site appeared to be more severe and longer in duration than for the spruce, although differing site conditions prevented a direct comparison. Fir trees also appeared to be affected by SO₂ pollution earlier in the twentieth century compared to spruce. Growth of both species, however, did not return to predicted levels following the reduction of pollution levels in the 1990s. A comparison with spruce and fir data from the Bavarian Forest, a region also affected by pollution in the past, revealed a temporal difference in growth suppression, likely related to different timings and loadings of SO₂ emissions between both regions. This study highlights pollution as another potential causal factor for the ‘divergence problem’ and dendroclimatic reconstructions in polluted regions should be developed with caution.
Показать больше [+] Меньше [-]Metal Concentrations in Organs of the Clam Amiantis umbonella and Their Use in Monitoring Metal Contamination of Coastal Sediments
2012
Tarique, Qaiser | Burger, Joanna | Reinfelder, John R.
The aim of this study was to evaluate the use of metal concentrations in clam organs to monitor metal contamination in coastal sediments. The concentrations of Cd, Cr, Cu, Hg, Ni, Pb, V, and Zn were measured in the kidneys, gonads, mantles, gills, digestive gland, and hearts of the infaunal clam Amiantis umbonella collected from a contaminated site near desalination and power plant discharges, and a reference site in Kuwait Bay. Metal concentrations in sediment and sediment pore water were also measured at the collection sites of individual clams at the contaminated site. The concentrations of all metals in all organs (except Zn in the digestive gland) were significantly higher in clams from the contaminated site than from the reference site. Metal concentrations in several organs in A. umbonella from the contaminated site were correlated with those in the sediments and pore waters to which they were exposed. However, fresh weights of gonads, gills, and mantles were significantly lower in clams from the contaminated site compared to the reference site, indicating that the observed elevated concentrations of metals in the organs of clams from the contaminated site largely reflect lower organ weights, rather than higher metal loads, and that these organs in A. umbonella and perhaps other clams are not appropriate for use as biomonitors of metal contamination. Metal concentrations in clam kidneys showed a wide dynamic range with respect to environmental contamination and kidney weight was not variable. Therefore, metal concentrations in clam kidneys provide a reliable biomonitor of contaminant metals in coastal marine sediments.
Показать больше [+] Меньше [-]A Practical LC-MS/MS Method for the Detection of NDMA at Nanogram per Liter Concentrations in Multiple Water Matrices
2012
Topuz, Emel | Aydin, Egemen | Pehlivanoglu-Mantas, Elif
N-nitrosodimethylamine (NDMA) is one of the most important disinfection by-products (DBPs) due to its carcinogenicity even at low concentrations which correspond to the levels occurring in drinking water and wastewater effluents. Therefore, NDMA is a candidate DBP that is expected to be regulated in the near future. However, the measurement of NDMA in the low nanogram per liter range is challenging because of the limitations of analytical techniques including both the sample preparation and the LC-MS/MS. Moreover, the accuracy of most of the current methods is only tested for drinking water and no information is present for other matrices. In this study, a combination of solid-phase extraction (SPE) and LC-MS/MS method that does not require high-resolution MS or advanced techniques for sample pretreatment is developed. Moreover, important factors that affect the optimization of the SPE method are provided to enable readers to optimize their own SPE procedures if necessary. The proposed method was validated for surface water, groundwater, and wastewater samples and the method quantification limit was 2 ng/L. In addition, the proposed method was used to determine the concentration of NDMA precursors measured as NDMA formation potential (NDMAFP) throughout a drinking water treatment plant at two different sampling periods. NDMAFP decreased by approximately 40 % in both samples. The concentrations ranged between 4 and 11.5 ng/L and the presence of these low concentrations underlines the need for an easy to use, yet sensitive method for the determination of NDMA in environmental matrices.
Показать больше [+] Меньше [-]Selection of Leguminous Trees Associated with Symbiont Microorganisms for Phytoremediation of Petroleum-Contaminated Soil
2012
Bento, Ricardo Aparecido | Saggin-Júnior, Orivaldo José | Pitard, Rosa Maria | Straliotto, Rosângela | da Silva, Eliane Maria Ribeiro | Tavares, Sílvio Roberto de Lucena | de Landa, Frederico Henrique Teixeira Gerken | Martins, Luiz Fernando | Volpon, Antonia Garcia Torres
Leguminous trees have a potential for phytoremediation of oil-contaminated areas for its symbiotic association with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi (AMF). This study selects leguminous tree associated with symbiotic microorganisms that have the potential to remediate petroleum-contaminated soil. Seven species of trees were tested: Acacia angustissima, Acacia auriculiformis, Acacia holosericea, Acacia mangium, Mimosa artemisiana, Mimosa caesalpiniifolia, and Samanea saman. They were inoculated with AMF mix and nitrogen-fixing bacteria mix and cultivated over five oil levels in soils, with five replicates. The decreasing of total petroleum hydrocarbons (TPH) values occurred especially with S. saman and its symbiotic microorganisms on highest oil soil contamination. Despite the large growth of A. angustissima and M. caesalpiniifolia on the highest level of oil, these species and its inoculated microorganisms did not reduce the soil TPH. Both plants were hydrocarbon tolerant but not able to remediate the polluted soil. In contrast were significative hydrocarbon decrease with M. artemisiana under high oil concentrations, but plant growth was severely affected. Results suggest that the ability of the plants to decrease the soil concentration of TPH is not directly related to its growth and adaptation to conditions of contamination, but the success of the association between plants and its symbionts that seem to play a critical role on remediation efficiency.
Показать больше [+] Меньше [-]NH₄-N Removal Through Nitrification and Hydrogenotrophic Denitrification in Simple Attached Growth Reactors
2012
Khanitchaidecha, Wilawan | Shakya, Maneesha | Tatsuru, Kamei | Kazama, Futaba
To provide good quality of drinking water, a biological system to remove ammonium-nitrogen (NH₄-N) from groundwater was studied in this research. The NH₄-N removal system consists of two attached growth reactors: one for nitrification and the other for hydrogenotrophic denitrification (H. denitrification). The nitrification reactor, fed by the NH₄-N contained water, could remove NH₄-N without any need of aeration. The nitrification efficiency was increased by reactor length; the highest efficiency of 92 % was achieved at the longest reactor of 100 cm. A high Fe in groundwater affected the reactor performance by decreasing the efficiency, while a low inorganic carbon (IC) had no effects. Despite of good efficiency in terms of NH₄-N removal, the nitrification reactor increased the concentration of NO₃-N in its effluent. To treat the NO₃-N, a H. denitrification reactor was set up after the nitrification reactor. Efficiency of the H. denitrification reactor was enhanced by increasing H₂ flow rates. The efficiencies were 3, 27, and 90 % for 30, 50, and 70 mL/min of H₂ flow rates, respectively. It was also found that the NO₃-N contained water (water from the nitrification reactor) had to supply IC (i.e., NaHCO₃ or CO₂) for efficient H. denitrification; however, an on-site reactor showed that it can be achieved even without IC addition. The treated water contained low NH₄-N and NO₃-N of <1.5 and <11.3 mg/L, respectively, which comply with drinking water standards. The good performance of the reactors in terms of high efficiency, no aeration need, and low H₂ supply indicated appropriateness of the system for groundwater treatment.
Показать больше [+] Меньше [-]Soil Solution Chemical Response to Two Decades of Experimental Acidification at the Bear Brook Watershed in Maine
2012
Fatemi, Farrah R. | Fernandez, Ivan J. | Szillery, Johanna | Norton, Stephen A. | Rustad, Lindsey E.
We examined long-term changes in soil solution chemistry associated with experimental, whole watershed-acidification at the Bear Brook Watershed in Maine (BBWM). At BBWM, the West Bear (WB) watershed has been treated with bimonthly additions of ((NH₄)₂ SO₄) since 1989. The adjacent East Bear (EB) watershed serves as a biogeochemical reference. Soil solution chemistry in the EB watershed was relatively stable from 1989–2007, with the exception of declining SO₄–S concentrations associated with a progressive decline in SO₄–S deposition during this period. Soil solution chemistry in WB reflected a progressive change in acid-neutralization mechanisms from base cation buffering to Al buffering associated with treatment during this period. Total dissolved Al concentrations progressively increased over time and were ~4× higher in 2007 than in 1989. Treatment of WB was also associated with long-term increases in soil solution H⁺, SO₄–S, and NO₃–N, whereas soil solution dissolved organic carbon (DOC) was unresponsive to treatment. For solutes such as Ca, H⁺, and SO₄–S, changes in stream chemistry were generally parallel to changes in soil solution chemistry, indicating a close coupling of terrestrial and aquatic processes that regulate the chemistry of solutions in this first-order stream watershed. For other solutes such as Al and DOC, solute concentrations were higher in soil solutions compared with streams, suggesting that sorption and transformation processes along hydrologic flow-paths were important in regulating the chemistry of solutions and the transport of these solutes.
Показать больше [+] Меньше [-]Colorimetric Artificial Nose and Pattern Recognition Methods for the Concentration Analysis of NH3
2012
Zhang, Ya | Luo, Xiao-gang | He, Kun | Huo, Dan-qun | Liu, Jingjing | Liu, Ping | Shi, Xiao-jie | Hou, Chang-jun
An investigation was made to evaluate the capacity of a colorimetric artificial nose to detect toxic gas at low concentration. A low-cost and simple colorimetric sensor array for identification and quantification of NH3 with different concentrations (30, 90, 150, and 210Â ppb) were reported. Using porphyrin, porphyrin derivatives (mainly metalloporphyrins), and chemically responsive dyes as the sensing elements, the developed sensor array of artificial nose showed a unique pattern of colorific change upon its exposure to NH3 with different concentrations. The dynamic responses of colorimetric sensor array to NH3 and colorimetric sensor array to various NH3 concentrations at the same time point showed that there was a positive relationship between the color change values of spots and contractions of NH3. NH3 with four concentrations were measured, and the response values at six different collection times were conducted by linear discrimination analysis (LDA) and artificial neural network (ANN). The four concentrations were discriminated completely by LDA. The response value of the colorimetric artificial nose at 0.4Â min was optimum for discrimination. The method of ANN was performed and less than 5% of error by using T-S fuzzy neural network.
Показать больше [+] Меньше [-]Plasma B-esterase and Glutathione S-transferase Activities in the South American Reptiles Caiman latirostris (Crocodylia, Alligatoridae) and Phrynops hilarii (Testudines, Chelidae)
2012
Attademo, Andrés M. | Lajmanovich, Rafael C. | Peltzer, Paola M. | Bassó, Agustín | Junges, Celina | Cabagna-Zenklusen, Mariana
We determined normal plasma butyrylcholinesterase (BChE), carboxylesterase (CbE using α-NA substrate), and glutathione S-transferase (GST) activities in Caiman latirostris and Phrynops hilarii to obtain reference values for organophosphorus (OP) pesticide monitoring. BChE and CbE sensitivity to malaoxon was also evaluated. C. latirostris (N = 12; six males and six females) and P. hilarii (N = 12; seven males and five females) were obtained from the programs Yacaré (Entre Ríos Province, Argentina) and Zoo of Córdoba (Córdoba Province, Argentina). Mean total (female and male) plasma BChE activity was significantly different between reptile species, ranging between 0.337 ± 0.085 μmol min−1 ml−1 of plasma for C. latirostris and 0.251 ± 0.070 μmol min−1 ml−1 of plasma for P. hilarii. However, plasma CbE (α-NA) and GST activities were significantly higher in P. hilarii (4.81 ± 1.00 and 0.145 ± 0.045 μmol min−1 ml−1 of plasma, respectively) than in C. latirostris (0.57 ± 0.20 and 0.059 ± 0.013 μmol min−1 ml−1 of plasma, respectively). No significant differences in B-esterase and GST activities were detected between sexes, except CbE (α-NA) for C. latirostris. IC50 values for BChE and CbE (α-NA) suggested different sensitivity levels between species and between sexes. The results demonstrate that plasma esterase activity varied between species, but not between sexes (except CbE for C. latirostris). The in vitro inhibition tests indicated that CbE (α-NA) is more sensitive to inhibition than BChE. C. latirostris may be the reptile species most vulnerable to field pesticide exposure because this reptile presents the lowest CbE activity levels and its B-esterase levels seem more sensitive to OP.
Показать больше [+] Меньше [-]