Уточнить поиск
Результаты 901-910 из 4,935
Mangrove forests as traps for marine litter Полный текст
2019
Martin, Cecilia | Almahasheer, Hanan | Duarte, Carlos M.
To verify weather mangroves act as sinks for marine litter, we surveyed through visual census 20 forests along the Red Sea and the Arabian Gulf, both in inhabited and remote locations. Anthropogenic debris items were counted and classified along transects, and the influence of main drivers of distribution were considered (i.e. land-based and ocean-based sources, density of the forest and properties of the object). We confirmed that distance to major maritime traffic routes significantly affects the density of anthropogenic debris in Red Sea mangrove forests, while this was independent of land-based activities. This suggests ocean-based activities combined with surface currents as major drivers of litter in this basin. Additionally, litter was more abundant where the mangrove density was higher, and object distribution through the mangrove stand often depended on their shape and dimension. We particularly show that pneumatophores act as a sieve retaining large plastic objects, leading to higher plastic mass estimates in mangroves compared to those of beaches previously surveyed in the Red Sea.
Показать больше [+] Меньше [-]Selective accumulation of plastic debris at the breaking wave area of coastal waters Полный текст
2019
Ho, Ngai Hei Ernest | Not, Christelle
Over the last decades, plastic debris has been identified and quantified in the marine environment. Coastal and riverine input have been recognized as sources of plastic debris, whereas oceanic gyres and sediments are understood to be sinks. However, we have a limited understanding of the fate of plastic debris in the nearshore environment. To investigate the movement and distribution of plastic debris in the nearshore environment, we collected samples at three distinct locations: below the high tide line, the turbulent zone created by the combination of breaking wave and backflush (defined as the boundary), and the outer nearshore. We estimated the abundance and physical characteristics (e.g. density, hardness, etc.) of macroplastic and microplastics. Four times and 15 times more macroplastics and microplastics are observed, respectively, at the boundary than in the outer nearshore waters, which suggests an accumulation driven by the physical properties of the plastic particles such as density, buoyancy and surface area. We further report that highly energetic conditions characteristic of the boundary area promote the long-term suspension and/or degradation of low density, highly buoyant or large surface area plastic debris, leading to their preferential accumulation at the boundary. Contrastingly, denser and low surface area plastic pieces were transported to the outer nearshore. These results emphasize the role of selective plastic movement at the nearshore driven by physical properties, but also by the combined effects of several hydrodynamics forces like wave action, wind or tide in the resuspension, as well as degradation and transport of plastic debris out of the nearshore environment.
Показать больше [+] Меньше [-]A source depletion model for vapor intrusion involving the influence of building characteristics Полный текст
2019
Zhang, Ruihuan | Jiang, Lin | Zhong, Maosheng | DeVaull, George | Lahvis, Matthew A. | Ma, Jie | Zhou, Youya | Zheng, Rui | Fu, Quankai
If volatile organic compound (VOC)-contaminated soil exists underneath a building, vapors may migrate upwards and intrude into the interior air of the building. Most previous models used to simulate vapor intrusion (VI) were developed by assuming that the source was constant, although a few recent models, such as the Risk-Based Corrective Action (RBCA) Tool Kit (TK) model, have been developed to consider source depletion (SD). However, the RBCA TK model ignores the effects of building characteristics due to its assumption that the ground is not covered by the actual building it models, which leads to incorrect results since the presence of the building affects the SD. In this study, a SD model is developed based on the three processes of VI while considering the impact of key building parameters on SD. The proposed model (i.e., the SD model) still follows the law of mass conservation, and the sensitivity analysis shows that the soil-building pressure differential (dP) is an important building characteristic that affects SD. Taking trichloroethylene (TCE) for simulation in the case of a soil concentration below the saturation concentration, as the soil permeability decreases, the differences in the results between the SD model and RBCA TK model decrease; as the Peclet number decreases, the effect of the dP on the results of the SD model decreases. The new model only accounts for the migration of contaminants at the source of depletion; therefore, the model is more applicable for these contaminants, which are considered to have low-biodegradable characteristics. Furthermore, since the model emphasizes the impact of buildings on the source, it is applicable when there is a considerable building area above the source, such as large commercial buildings or residential communities with underground parking lots, which exist in most cities.
Показать больше [+] Меньше [-]Abiotic reduction of uranium(VI) with humic acid at mineral surfaces: Competing mechanisms, ligand and substituent effects, and electronic structure and vibrational properties Полный текст
2019
Wang, Qian | Zhu, Chang | Huang, Xiaoxiao | Yang, Gang
Abiotic reduction represents an attractive technology to control U(VI) contamination. In this work, an abiotic route of U(VI) reduction with humic acid at mineral surfaces is proposed and reaction mechanisms are addressed by periodic density functional theory calculations. Different influencing factors such as ligand effect, content of CO₃²⁻ ligands and substituent effect are inspected. The coordination chemistry of uranyl(VI) surface complexes relies strongly on substrates and ligands, and the calculated results are in good agreements with experimental observations available. For the OH⁻ ligand, two competitive mechanisms co-exist that respectively produce the U(IV) and U(V) species, and the former is significantly preferred because of lower energy barriers. Instead, the NO₃⁻ ligand leads to the formation of U(V) while for the Cl⁻ ligand, the U(VI) surface complex remains very stable and is not likely to be reduced because of very high energy barriers. The U(V) and U(IV) complexes are the predominant products for low and high CO₃²⁻ contents, respectively. Accordingly, the abiotic reduction processes with humic acid are efficient to manage U(VI) contamination and become preferred under basic conditions or at higher CO₃²⁻ contents. The U(VI) reduction is further promoted by introduction of electron-donating rather than electron-withdrawing substituents to humic acid. Electronic structure analyses and vibrational frequency assignments are calculated for the various uranium surface complexes of the reduction processes, serving as a guide for future experimental and engineered studies. The molecular-level understanding given in this work offers an abiotic route for efficient reduction of U(VI) and remediation of U(VI)-contaminated sites at ambient conditions.
Показать больше [+] Меньше [-]Different cardiorespiratory effects of indoor air pollution intervention with ionization air purifier: Findings from a randomized, double-blind crossover study among school children in Beijing Полный текст
2019
Dong, Wei | Liu, Shan | Chu, Mengtian | Zhao, Bin | Yang, Di | Chen, Chen | Miller, Mark R. | Loh, Miranda | Xu, Junhui | Chi, Rui | Yang, Xuan | Guo, Xinbiao | Deng, Furong
Indoor air pollution is associated with numerous adverse health outcomes. Air purifiers are widely used to reduce indoor air pollutants. Ionization air purifiers are becoming increasingly popular for their low power consumption and noise, yet its health effects remain unclear. This randomized, double-blind crossover study is conducted to explore the cardiorespiratory effects of ionization air purification among 44 children in Beijing. Real or sham purification was performed in classrooms for 5 weekdays. Size-fractionated particulate matter (PM), black carbon (BC), ozone (O₃), and negative air ions (NAI) were monitored, and cardiorespiratory functions were measured. Mixed-effect models were used to establish associations between exposures and health parameters. Real purification significantly decreased PM and BC, e.g. PM₀.₅, PM₂.₅, PM₁₀ and BC were decreased by 48%, 44%, 34% and 50%, respectively. O₃ levels were unchanged, while NAI was increased from 12 cm⁻³ to 12,997 cm⁻³. Real purification was associated with a 4.4% increase in forced exhaled volume in 1 s (FEV₁) and a 14.7% decrease in fractional exhaled nitrogen oxide (FeNO). However, heart rate variability (HRV) was altered negatively. Interaction effects of NAI and PM were observed only on HRV, and alterations in HRV were greater with high NAI. Ionization air purifier could bring substantial respiratory benefits, however, the potential negative effects on HRV need further investigation.
Показать больше [+] Меньше [-]Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton Полный текст
2019
Saavedra Gorriateguy, Juan | Stoll, Serge | Slaveykova, Vera I.
Concerns about possible environmental implications of nano- and micro-plastics are continuously raising. Hence, comprehensive understanding of their behaviour, bioaccumulation and toxicity potential is required. Nevertheless, systematic studies on their fate and possible effects in freshwaters, as well as the influence of particle-specific and environmental factors on their behaviour and impacts are still missing. The aims of the present study are thus two-fold: (i) to examine the role of the surface charge on nanoplastic stability and acute effects to freshwater zooplankton; (ii) to decipher the influence of the refractory natural organic matter (NOM) on the nanoplastic fate and effects. Amidine and carboxyl-stabilized polystyrene (PS) spheres of 200 nm diameter characterized by opposite primary surface charges and neutral buoyancy were selected as model nanoplastics. The results demonstrated that the surface functionalization of the polystyrene nanoplastics controls their aggregation behaviour. Alginate or Suwannee River humic acid (SRHA) modified significantly the surface charge of positively-charged amidine PS nanoplastic and the aggregation state, while had no significant influence on the negatively-charged carboxyl PS nanoplastic. Both amidine and carboxyl PS nanoplastics were ingested by the zooplankton and concentrated mainly in the gut of water flea Daphnia magna and larvae Thamnocephalus platyurus, and the stomach of rotifer Brachionus calyciflorus. Amidine PS nanoplastic was more toxic than carboxyl one. The toxicity decreased in the order D. magna (48 h -immobilization) > B. calyciflorus (24 h - lethality) > T. platyurus (24 h - lethality). Alginate or SRHA reduced significantly the toxicity of both amidine and carboxyl PS nanoplastics to the studied zooplankton representatives. The implications of this laboratory study findings to natural environment were discussed.
Показать больше [+] Меньше [-]Transformation of norfloxacin during the chlorination of marine culture water in the presence of iodide ions Полный текст
2019
Pan, Zihan | Zhu, Yunjie | Li, Leiyun | Shao, Yanan | Wang, Yinghui | Yu, Kefu | Zhu, Hongxiang | Zhang, Yuanyuan
The antibacterial agent norfloxacin (NOR) and sodium hypochlorite (NaClO), which are both widely used in marine culture, react with each other to form the halogenated disinfection byproducts (X-DBPs). The effects of the water characteristics and iodide concentration on the reaction kinetics were investigated. The results showed that the reaction rate of NOR with NaClO increases from 0.0586 min⁻¹ to 0.1075 min⁻¹ when the iodide concentration was changed from 0 μg⁻¹ to 50 μg⁻¹. This demonstrated the enhancement of NOR oxidation in the presence of iodide ions. Four novel iodinated DBPs (I-DBPs) were identified in the marine culture water. Iodine substitutions occurred at the C3 and C8 positions of NOR. The formation mechanisms of X-DBPs in the marine culture water were proposed based on the intermediate and final products. NOR may undergo a ring-opening reaction, a de-carbonyl reaction and substitution to form intermediates and finally generate the X-DBPs. Furthermore, the predicted logKOW and logBCF values of the I-DBPs were higher than that of the Br-DBPs and Cl-DBPs. The AOX concentration in the synthetic water samples decreased in the following order: seawater (8.49 mg L⁻¹) > marine culture water (4.05 mg L⁻¹) > fresh water (1.89 mg L⁻¹). The amount of AOX also increased with the increase in iodide concentration. These results indicated that the I-DBPs were more toxic than their brominated and chlorinated analogues.
Показать больше [+] Меньше [-]Urban population exposure to tropospheric ozone: A multi-country forecasting of SOMO35 using artificial neural networks Полный текст
2019
Antanasijević, Davor | Pocajt, Viktor | Perić-Grujić, Aleksandra | Ristic, Mirjana
Urban population exposure to tropospheric ozone is a serious health concern in Europe countries. Although there are insufficient evidence to derive a level below which ozone has no effect on mortality WHO (World Health Organization) uses SOMO35 (sum of means over 35 ppb) in their health impact assessments. Is this paper, the artificial neural network (ANN) approach was used to forecast SOMO35 at the national level for a set of 24 European countries, mostly EU members. Available ozone precursors’ emissions, population and climate data for the period 2003–2013 were used as inputs. Trend analysis had been performed using the linear regression of SOMO35 over time, and it has demonstrated that majority of the studied countries have a decreasing trend of SOMO35 values.The created models have made majority of predictions (≈60%) with satisfactory accuracy (relative error <20%) on testing, while the best performing model had R² = 0.87 and overall relative error of 33.6%. The domain of applicability of the created models was analyzed using slope/mean ratio derivate from the trend analysis, which was successful in distinguishing countries with high from countries with low prediction errors. The overall relative error was reduced to <14%, after the pool of countries was reduced based on the abovementioned criterion.
Показать больше [+] Меньше [-]Detection of PM2.5 plume movement from IoT ground level monitoring data Полный текст
2019
Kanabkaew, Thongchai | Mekbungwan, Preechai | Raksakietisak, Sunee | Kanchanasut, Kanchana
In this study, we analysed a data set from 10 low-cost PM₂.₅ sensors using the Internet of Things (IoT) for air quality monitoring in Mae Sot, which is one of the most vulnerable areas for high PM₂.₅ concentration in Thailand, during the 2018 burning season. Our objectives were to understand the nature of the plume movement and to investigate possibilities of adopting IoT sensors for near real-time forecasting of PM₂.₅ concentrations. Sensor data including PM₂.₅ and meteorological parameters (wind speed and direction) were collected online every 2 min where data were grouped into four zones and averaged every 15 min interval. Results of diurnal profile plot revealed that PM₂.₅ concentrations were high around early to late morning (3:00–9:00) and gradually reduced till the rest of the day. During the biomass burning period, maximum daily average concentration recorded by the sensors was 280 μg/m³ at Thai Samakkhi while the minimum was 13 μg/m³ at Mae Sot. Lag time concentrations, attributed by biomass burning (hotspots), significantly influenced the formation of PM₂.₅ while the disappearance of PM₂.₅ was found to be influenced by moderate wind speed. The PM₂.₅ concentrations of the next 15 min at the downwind zone (MG) were predicted using lag time concentrations with different wind categories. The next 15 min predictions of PM₂.₅ at MG were found to be mainly influenced by its lag time concentrations (MG_Lag); with higher wind speed, however, the lag time concentrations from the upwind zones (MS_Lag and TS_Lag) started to show more influence. From this study, we have found that low-cost IoT sensors provide not only real-time monitoring information but also demonstrate great potential as an effective tool to understand the PM₂.₅ plume movement with temporal variation and geo-specific location.
Показать больше [+] Меньше [-]Reflection of concentrations of polybrominated diphenyl ethers in health risk assessment: A case study in sediments from the metropolitan river, North China Полный текст
2019
Wang, Guoguang | Liu, Yu | Tao, Wei | Zhao, Xinda | Li, Xianguo
As a developed city in North China, Tsingtao is believed to be suffering from the pollution of polybrominated diphenyl ethers (PBDEs) due to the rapid industrialization and urbanization in recent years. In this work, 8 PBDE congeners were detected in sediments from Moshui River, Tsingtao. BDE-209 and sum of 7 low brominated PBDE congeners (∑₇PBDEs, excluding BDE-209) ranged from 10.2 × 10⁻³ to 237 × 10⁻³ mg kg⁻¹ and from 1.62 × 10⁻³ to 23.1 × 10⁻³ mg kg⁻¹ d.w., respectively. PBDE concentrations decreased in the order of midstream > downstream > upstream, attributing to the discrepancies in anthropogenic activities among these areas. Principal component analysis coupled with multiple linear regression (PCA-MLR) revealed that 24.4% of PBDEs were derived from surface runoff of contaminated soils, 58.2% from direct discharge of local sources and 17.4% from atmospheric deposition. The probabilistic health risk assessment of PBDEs was performed by using Monte Carlo simulation. The carcinogenic and non-carcinogenic risks based on total PBDEs were low for children and teens, whilst severe for adults. However, based on bioaccessible PBDEs (in vitro gastrointestinal model), there was no obvious health risk for the three age groups. To the best of our knowledge, the present study was the first attempt to assess the health risk by using bioaccessible PBDEs in sediments.
Показать больше [+] Меньше [-]