Уточнить поиск
Результаты 941-950 из 7,975
Simulated mobile communication frequencies (3.5 GHz) emitted by a signal generator affects the sleep of Drosophila melanogaster
2021
Wang, Yahong | Zhang, Hongying | Zhang, Ziyan | Sun, Boqun | Tang, Chao | Zhang, Lu | Jiang, Zhihao | Ding, Bo | Liao, Yanyan | Cai, Peng
With the rapid development of science and technology, 5G technology will be widely used, and biosafety concerns about the effects of 5G radiofrequency radiation on health have been raised. Drosophila melanogaster was selected as the model organism for our study, in which a 3.5 GHz radiofrequency radiation (RF-EMR) environment was simulated at intensities of 0.1 W/m², 1 W/m², and 10 W/m². The activity of parent male and offspring (F1) male flies was measured using a Drosophila activity monitoring system under short-term and long-term 3.5 GHz RF-EMR exposure. Core genes associated with heat stress, the circadian clock and neurotransmitters were detected by QRT-PCR technology, and the contents of GABA and glutamate were detected by UPLC-MS. The results show that short-term RF-EMR exposure increased the activity level and reduced the sleep duration while long-term RF-EMR exposure reduced the activity level and increased the sleep duration of F1 male flies. Under long-term RF-EMR, the expression of heat stress response-related hsp22, hsp26 and hsp70 genes was increased, the expression of circadian clock-related per, cyc, clk, cry, and tim genes was altered, the content of GABA and glutamate was reduced, and the expression levels of synthesis, transport and receptor genes were altered. In conclusion, long-term RF-EMR exposure enhances the heat stress response of offspring flies and then affects the expression of circadian clock and neurotransmitter genes, which leads to decreased activity, prolonged sleep duration, and improved sleep quality.
Показать больше [+] Меньше [-]Effect of oil pollution on the ecological condition of soils and bottom sediments of the arctic region (Yakutia)
2021
Lifshits, Sara | Glyaznetsova, Yuliya | Erofeevskaya, Larisa | Chalaya, Olga | Zueva, Iraida
Oil and petroleum products are known to be among the most widespread soil pollutants. The risk of emergencies is sure to increase greatly in conditions of abnormally low temperatures. Oil and oil products are not only toxic to the environment, but can also have a negative impact on the state of the permafrost zone, accelerating the processes of permafrost degradation. The goal of the research was to study the soils and bottom sediments for oil pollution in the Arctic region of Yakutia. The research was carried out with using the complex of geochemical and microbiological methods of analysis. It had shown that at present oil pollution was mainly concentrated on the objects bearing a high technogenic load. However, some migration of hydrocarbons was observed with melt, seasonal melt and rainwaters, as a result of which the natural background of the nearby territories became technogenic character. In the Arctic conditions for the first time according to the obtained data on geochemical and microbiological studies oxidative destruction of oil pollutants in soil occurred mainly under the influence of physic and chemical environmental factors, not by microbial oxidation. Sluggish processes of mineralization of organic residues and the transformation of oil pollutants by the type of putrefaction led to the colonization of oil-polluted soils of the Arctic with putrefying and pathogenic microorganisms. The purpose of further research will be studying the possibility of intensification of soil remediation processes of technologically disturbed soils at abnormally low temperatures.
Показать больше [+] Меньше [-]Long-term exposure to particulate matter and roadway proximity with age at natural menopause in the Nurses’ Health Study II Cohort
2021
Li, Huichu | Hart, Jaime E. | Mahalingaiah, Shruthi | Nethery, Rachel C. | Bertone-Johnson, Elizabeth | Laden, Francine
Evidence has shown associations between air pollution and traffic-related exposure with accelerated aging, but no study to date has linked the exposure with age at natural menopause, an important indicator of reproductive aging. In this study, we sought to examine the associations of residential exposure to ambient particulate matter (PM) and distance to major roadways with age at natural menopause in the Nurses’ Health Study II (NHS II), a large, prospective female cohort in US. A total of 105,996 premenopausal participants in NHS II were included at age 40 and followed through 2015. Time-varying residential exposures to PM₁₀, PM₂.₅₋₁₀, and PM₂.₅ and distance to roads was estimated. We calculated hazard ratios (HR) and 95% confidence intervals (CIs) for natural menopause using Cox proportional hazard models adjusting for potential confounders and predictors of age at menopause. We also examined effect modification by region, smoking, body mass, physical activity, menstrual cycle length, and population density. There were 64,340 reports of natural menopause throughout 1,059,229 person-years of follow-up. In fully adjusted models, a 10 μg/m³ increase in the cumulative average exposure to PM₁₀ (HR: 1.02, 95% CI: 1.00, 1.04), PM₂.₅₋₁₀ (HR: 1.03, 95% CI: 1.00, 1.05), and PM₂.₅ (HR: 1.03, 95% CI: 1.00, 1.06) and living within 50 m to a major road at age 40 (HR: 1.03, 95%CI: 1.00, 1.06) were associated with slightly earlier menopause. No statistically significant effect modification was found, although the associations of PM were slightly stronger for women who lived in the West and for never smokers. To conclude, we found exposure to ambient PM and traffic in midlife was associated with slightly earlier onset of natural menopause. Our results support previous evidence that exposure to air pollution and traffic may accelerate reproductive aging.
Показать больше [+] Меньше [-]PCDD/Fs emissions from secondary copper production synergistically controlled by fabric filters and desulfurization
2021
Li, Haifeng | Liu, Wenbin | Lu, Anxiang | Li, Cheng | Die, Qingqi | Lei, Rongrong | Wu, Xiaolin
The effects of fabric filters and desulfurization systems during secondary copper smelting on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) concentrations, emission coefficients, and profiles were studied in an oxygen-rich smelting furnace and an anode furnace. In the anode furnace, the toxic equivalent (TEQ) concentration ranges were 0.106–1.04 ng World Health Organization (WHO)-TEQ/m³ at the fabric filters inlet and 0.027–0.17 ng WHO-TEQ/m³ at the outlet. For the oxygen-rich smelting furnace, the TEQ concentration ranges were 1.21–1.93 and 0.010–0.019 ng WHO-TEQ/m³ at the desulfurization system inlet and outlet, respectively. The TEQs in the outlet stack gases of the desulfurization system from the anode furnace were 0.0041–0.016 ng WHO-TEQ/m³. It is likely that PCDD/Fs that were taken away from the stack gases were adsorbed by the fly ash and gypsum. Solid residues were the dominant release routes for PCDD/Fs. PCDD/Fs congener and homologue profiles of stack gases from different smelting stages were similar. The contributions of more chlorinated homologues from the anode furnace decreased observably after the stack gases passed through the fabric filters. However, the desulfurization process did not greatly change the PCDD/Fs homologue profiles. Overall, both the fabric filters and desulfurization systems showed excellent removal efficiencies for PCDD/Fs in the stack gases, which reduced the TEQ emissions to well below the 0.5 ng WHO-TEQ/m³ to achieve standard discharge.
Показать больше [+] Меньше [-]Di (2-ethylhexyl) phthalate impairs primordial follicle assembly by increasing PDE3A expression in oocytes
2021
Liu, Jing-Cai | Yan, Zi-Hui | Li, Bo | Yan, Hong-Chen | De Felici, M. (Massimo) | Shen, Wei
It is known that Di (2-ethylhexyl) phthalate (DEHP) may impact mammalian reproduction and that in females one target of the drug’s action is follicle assembly. Here we revisited the phthalate’s action on the ovary and from bioinformatics analyses of the transcriptome performed on newborn mouse ovaries exposed in vitro to DEHP, up-regulation of PDE3A, as one of the most important alterations caused by DEHP on early folliculogenesis, was identified. We obtained some evidence suggesting that the decrease of cAMP level in oocytes and the parallel decrease of PKA expression, consequent on the PDE3A increase, were a major cause of the reduction of follicle assembly in the DEHP-exposed ovaries. In fact, Pde3a RNAi on cultured ovaries reducing cAMP and PKA decrease counteracted the primordial follicle assembly impairment caused by the compound. Moreover, RNAi normalized the level of Kit, Nobox, Figla mRNA and GDF9, BMP15, CX37, γH2AX proteins in oocytes, and KitL transcripts in granulosa cells as well as their proliferation rate altered by DEHP exposure. Taken together, these results identify PDE3A as a new critical target of the deleterious effects of DEHP on early oogenesis in mammals and highlight cAMP-dependent pathways as major regulators of oocyte and granulosa cell activities crucial for follicle assembly. Moreover, we suggest that the level of intracellular cAMP in the oocytes may be an important determinant for their capability to repair DNA lesions caused by DNA damaging compounds including DEHP.
Показать больше [+] Меньше [-]Fate of antibiotic resistance genes in industrial-scale rapid composting of pharmaceutical fermentation residue: The role implications of microbial community structure and mobile genetic elements
2021
Tang, Zhurui | Huang, Caihong | Tian, Yu | Xi, Beidou | Guo, Wei | Tan, Wenbing
Composting is an effective technology to recycle organic solid waste as a green resource. However, pharmaceutical fermentation residue (PFR) contains a variety of pollutants, such as residual drug and antibiotic resistance genes (ARGs), which limits the green cycle of using PFR as a resource. To promote the green recycling of PFR, this study evaluated the characteristics of abundance and the response relationship of ARGs during the process of rapid composting. Different rapid composting samples were collected, and DNA was extracted from each sample. The absolute abundance of ARGs was quantified using quantitative PCR, and the microbial community structure was identified using high-throughput sequencing. The results showed that ermB, ermF, tetM and tetQ were reduced by 89.55%, 15.10%, 89.55%, and 82.30% respectively, and only sul2 increased by approximately 5-fold. Mobile genetic elements (MGEs) directly affected the changes in abundance of ARGs. As typical MGEs, intl1 and intl2 decreased by 3.40% and 54.32%, respectively. Potential host microorganisms important factors that affected ARGs and MGEs. A network analysis indicated that the potential host microorganisms were primarily distributed in Firmicutes and Proteobacteria at the phylum level. The pH and content of water-extractable sulfur were physicochemical parameters that substantially affected the abundance of potential host microorganisms through redundancy analysis. Industrial-scale rapid composting could reduce the number of ARGs and shorten the composting cycle, which merits its popularization and application.
Показать больше [+] Меньше [-]Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review
2021
Ong, Ee Shen | Rabbani, Alija Haydar | Habashy, Mahmoud M. | Abdeldayem, Omar M. | Al-Sakkari, Eslam G. | Rene, Eldon R.
By the year 2050, it is estimated that the demand for palm oil is expected to reach an enormous amount of 240 Mt. With a huge demand in the future for palm oil, it is expected that oil palm by-products will rise with the increasing demand. This represents a golden opportunity for sustainable biohydrogen production using oil palm biomass and palm oil mill effluent (POME) as the renewable feedstock. Among the different biological methods for biohydrogen production, dark fermentation and photo-fermentation have been widely studied for their potential to produce biohydrogen by using various waste materials as feedstock, including POME and oil palm biomass. However, the complex structure of oil palm biomass and POME, such as the lignocellulosic composition, limits fermentable substrate available for conversion to biohydrogen. Therefore, proper pre-treatment and suitable process conditions are crucial for effective biohydrogen generation from these feedstocks. In this review, the characteristics of palm oil industrial waste, the process used for biohydrogen production using palm oil industrial waste, their pros and cons, and the influence of various factors have been discussed, as well as a comparison between studies in terms of types of reactors, pre-treatment strategies, the microbial culture used, and optimum operating condition have been presented. Through biological production, hydrogen production rates up to 52 L-H₂/L-medium/h and 6 L-H₂/L-medium/h for solid and liquid palm oil industrial waste, respectively, can be achieved. In short, the continuous supply of palm oil production by-product and relatively, the low cost of the biological method for hydrogen production indicates the potential source of renewable energy.
Показать больше [+] Меньше [-]Bioplastic accumulates antibiotic and metal resistance genes in coastal marine sediments
2021
Di Cesare, Andrea | Pinnell, Lee J. | Brambilla, Diego | Elli, Giulia | Sabatino, Raffaella | Sathicq, María B. | Corno, Gianluca | O'Donnell, Colin | Turner, Jeffrey W.
The oceans are increasingly polluted with plastic debris, and several studies have implicated plastic as a reservoir for antibiotic resistance genes and a potential vector for antibiotic-resistant bacteria. Bioplastic is widely regarded as an environmentally friendly replacement to conventional petroleum-based plastic, but the effects of bioplastic pollution on marine environments remain largely unknown. Here, we present the first evidence that bioplastic accumulates antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in marine sediments. Biofilms fouling ceramic, polyethylene terephthalate (PET), and polyhydroxyalkanoate (PHA) were investigated by shotgun metagenomic sequencing. Four ARG groups were more abundant in PHA: trimethoprim resistance (TMP), multidrug resistance (MDR), macrolide-lincosamide-streptogramin resistance (MLS), and polymyxin resistance (PMR). One MRG group was more abundant in PHA: multimetal resistance (MMR). The relative abundance of ARGs and MRGs were strongly correlated based on a Mantel test between the Bray-Curtis dissimilarity matrices (R = 0.97, p < 0.05) and a Pearson's analysis (R = 0.96, p < 0.05). ARGs were detected in more than 40% of the 57 metagenome-assembled genomes (MAGs) while MRGs were detected in more than 90% of the MAGs. Further investigation (e.g., culturing, genome sequencing, antibiotic susceptibility testing) revealed that PHA biofilms were colonized by hemolytic Bacillus cereus group bacteria that were resistant to beta-lactams, vancomycin, and bacitracin. Taken together, our findings indicate that bioplastic, like conventional petroleum-based plastic, is a reservoir for resistance genes and a potential vector for antibiotic-resistant bacteria in coastal marine sediments.
Показать больше [+] Меньше [-]The role of hydrodynamic fluctuations and wind intensity on the distribution of plastic debris on the sandy beaches of Paraná River, Argentina
2021
Garello, Nicolás | Blettler, Martín C.M. | Espínola, Luis A. | Wantzen, Karl M. | González-Fernández, Daniel | Rodrigues, Stéphane
Plastic in the environment is considered an emerging pollutant of global concern. In spite of intensive research, many questions remain open, such as the processes that drive the deposition and remobilization of plastic debris on river beaches. The objectives of this study were: i) to analyze the influence of the natural hydrological fluctuations and wind intensity on the distribution of mesoplastic (0.5–2.5 cm) and macroplastic (>2.5 cm) debris in beach sediments of a large river, ii) to describe the type of plastic debris found and iii) to explore potential relations between the number of items and weight of macro- and mesoplastics. Our results suggest that, during lowering water levels, flow removes the plastic debris and transports it further downstream. Conversely, when the beach sediments remain exposed during long periods, the plastic debris accumulates considerably. Nevertheless, the influence of wind intensity on plastic debris transport was comparatively negligible. In other words, in our study the water flow had a greater capacity to remobilize and transport plastic debris than the wind. The most abundant mesoplastic items were foam, hard plastic, film and small fragments of fishing line. The dominant macroplastic items recorded were pieces of fishing line (nylon) and cigarette filters (cellulose acetate), typically discarded by beach users. Other items found in large quantities were soft packaging elements (expanded polystyrene), hard plastic containers (polystyrene, polyethylene terephthalate) and beverage bottles (polyethylene terephthalate), typical items of domestic use in the Paraná River region. Finally, we found that the density of macroplastic items is highly correlated to the density of mesoplastic items, serving as surrogate for further estimations. Our results could help to develop better mitigation strategies in seasonal riverscapes, based on the influence of the hydrological cycle and the characteristics of the most abundant meso- and macroplastics.
Показать больше [+] Меньше [-]Exploring the external exposome using wearable passive samplers - The China BAPE study
2021
Koelmel, Jeremy P. | Lin, Elizabeth Z. | Guo, Pengfei | Zhou, Jieqiong | He, Jucong | Chen, Alex | Gao, Ying | Deng, Fuchang | Dong, Haoran | Liu, Yuanyuan | Cha, Yu’e | Fang, Jianlong | Beecher, Chris | Shi, Xiaoming | Tang, Song | Godri Pollitt, Krystal J.
Environmental exposures are one of the greatest threats to human health, yet we lack tools to answer simple questions about our exposures: what are our personal exposure profiles and how do they change overtime (external exposome), how toxic are these chemicals, and what are the sources of these exposures? To capture variation in personal exposures to airborne chemicals in the gas and particulate phases and identify exposures which pose the greatest health risk, wearable exposure monitors can be deployed. In this study, we deployed passive air sampler wristbands with 84 healthy participants (aged 60–69 years) as part of the Biomarkers for Air Pollutants Exposure (China BAPE) study. Participants wore the wristband samplers for 3 days each month for five consecutive months. Passive samplers were analyzed using a novel gas chromatography high resolution mass spectrometry data-processing workflow to overcome the bottleneck of processing large datasets and improve confidence in the resulting identified features. The toxicity of chemicals observed frequently in personal exposures were predicted to identify exposures of potential concern via inhalation route or other routes of airborne contaminant exposure. Three exposures were highlighted based on elevated toxicity: dichlorvos from insecticides (mosquito/malaria control), naphthalene partly from mothballs, and 183 polyaromatic hydrocarbons from multiple sources. Other exposures explored in this study are linked to diet and personal care products, cigarette smoke, sunscreen, and antimicrobial soaps. We highlight the potential for this workflow employing wearable passive samplers for prioritizing chemicals of concern at both the community and individual level, and characterizing sources of exposures for follow up interventions.
Показать больше [+] Меньше [-]