Уточнить поиск
Результаты 951-960 из 6,548
Characterizing DOC sources in China’s Haihe River basin using spectroscopy and stable carbon isotopes Полный текст
2020
Wen, Zhidan | Song, Kaishan | Liu, Ge | Lyu, Lili | Shang, Yingxin | Fang, Chong | Du, Jia
The Haihe River Basin is a polluted area affected by the developing industry and intensive agricultural activities in China. Dissolved organic matter (DOC) and light-absorbing characteristics of chromophoric dissolved organic matter (CDOM) were monitored in different tributaries of China within the Haihe River basin during spring and autumn. The concentration of DOC during spring was higher than during autumn (p < 0.01), and the evaporation was an important factor affecting the concentration of DOC in the basin. By contrast, the proportion of inputs due to terrigenous plants during autumn was higher than during spring. Carbon stable isotope analysis δ¹³C and C: N ratio of DOC, evidenced the inputs of DOC in the Haihe River basin from different sources including sewage, terrestrial plants, soil, and plankton. Isotopic analysis of δ¹³C and excitation-emission matrix (EEM) with fluorescence regional integration (FRI) analysis supported the hypothesis that allochthonous inputs contributed substantially to the inputs of DOC in the Haihe River basin, coming largely from sewage (9.8%–81.2%) and terrestrial plants (13.3%–65.8%). Depending on the source of DOC and contribution, four types with different EEM spectra were set. Type I, river water from sewage (81.2%); Type II, river water with input from terrestrial plants (65.8%); Type III, river water with plankton (36.4%), and Type IV, river water with soil-derived DOC (33.9%). The results demonstrated that the combined methodology using ¹³C stable isotope and EEM-FRI can be used to characterize the components of DOC in river waters. This approach was important for tracking the concentration and composition of DOC in river waters from different input sources and for better understanding concerning the local regulation of the terrestrial carbon cycle.
Показать больше [+] Меньше [-]Biological responses of shoal flounder (Syacium gunteri) to toxic environmental pollutants from the southern Gulf of Mexico Полный текст
2020
Quintanilla-Mena, Mercedes | Gold-Bouchot, Gerardo | Zapata-Pérez, Omar | Rubio-Piña, Jorge | Quiroz-Moreno, Adriana | Vidal-Martínez, Víctor Manuel | Aguirre-Macedo, Ma Leopoldina | Puch-Hau, Carlos
The Gulf of Mexico (GoM) is exposed to a diversity of contaminants, such as hydrocarbons and heavy metal(oid)s, either from natural sources or as a result of uncontrolled coastal urbanisation and industrialisation. To determine the effect of these contaminants on the marine biota along the Mexican GoM, the biological responses of the shoal flounder Syacium gunteri, naturally exposed, were studied. The study area included all the Mexican GoM, which was divided into three areas: West-southwest (WSW), South-southwest (SSW) and South-southeast (SSE). The biological responses included the global DNA methylation levels, the expression of biomarker genes related to contaminants (cytochrome P450 1A, glutathione S-transferase, glutathione reductase, glutathione peroxidase, catalase, and vitellogenin), histopathological lesions and PAH metabolites in bile (hydroxynaphthalene, hydroxyphenanthrene, hydroxypyrene and Benzo[a]pyrene). The correlation between the biological responses and the concentration of contaminants (hydrocarbons and metal(oid)s), present in both sediments and organisms, were studied. The shoal flounders in WSW and SSW areas presented higher DNA hypomethylation, less antioxidative response and biotransformation gene expression and a higher concentration of PAH metabolites in bile than SSE area; those responses were associated with total hydrocarbons and metals such as chromium (Cr). SSE biological responses were mainly associated with the presence of metals, such as cadmium (Cd) and copper (Cu), in the tissue of shoal flounders. The results obtained on the physiological response of the shoal flounder can be used as part of a permanent active environmental surveillance program to watch the ecosystem health of the Mexican GoM.
Показать больше [+] Меньше [-]Human chemical signature: Investigation on the influence of human presence and selected activities on concentrations of airborne constituents Полный текст
2020
Mitova, Maya I. | Cluse, Camille | Goujon-Ginglinger, Catherine G. | Kleinhans, Samuel | Rotach, Michel | Tharin, Manuel
There is growing evidence that the very presence of human beings in an enclosed environment can impact air quality by affecting the concentrations of certain airborne volatile organic compounds (VOC). This influence increases considerably when humans perform different activities, such as using toiletries, or simply eating and drinking. To understand the influence of these parameters on the concentrations of selected airborne constituents, a study was performed under simulated residential conditions in an environmentally-controlled exposure room. The human subjects either simply remained for a certain time in the exposure room, or performed pre-defined activities in the room (drinking wine, doing sport, using toiletries, and preparation of a meal containing melted cheese). The impact of each activity was assessed separately using our analytical platform and exposure room under controlled environmental conditions. The results showed that prolonged human presence leads to increased levels of isoprene, TVOCs, formaldehyde and, to a lesser extent, acetaldehyde. These outcomes were further supported by results of meta-analyses of data acquired during several internal studies performed over two years. Furthermore, it was seen that the indoor concentrations of several of the selected constituents rose when the recreational and daily living activities were performed. Indeed, an increase in acetaldehyde was observed for all tested conditions, and these higher indoor levels were especially notable during wine-drinking as well as cheese meal preparation. Formaldehyde increased during the sessions involving sport, using toiletries, and cheese meal preparation. Like acetaldehyde, acrolein, crotonaldehyde and particulate matter levels rose significantly during the cheese meal preparation session. In conclusion, prolonged human residence indoors and some recreational and daily living activities caused substantial emissions of several airborne pollutants under ventilation typical for residential environments.
Показать больше [+] Меньше [-]Exposure to low dose ZnO nanoparticles induces hyperproliferation and malignant transformation through activating the CXCR2/NF-κB/STAT3/ERK and AKT pathways in colonic mucosal cells Полный текст
2020
Meng, Jian | Zhou, Xiaoling | Yang, Juan | Qu, Xianjun | Cui, Shuxiang
As ZnO nanoparticles have been applied in many fields, their biological risks on human health, of course, are worthy of our attention. Whether ZnO NPs have the risk and how colonic cells respond to the invaded ZnO NPs are still unknown. Herein, we evaluated the biological effects of ZnO NPs on colonic mucosal cells by in vitro and in vivo methods. IMCE cells, with APC mutation but phenotypically normal, demonstrated hyperproliferation through activating the CXCR2/NF-κB/STAT3/ERK and AKT pathways when exposed to ZnO NPs for 24 h. Long-term exposure of ZnO NPs resulted in the malignant transformation of IMCE cells, showing the morphological changes, anchorage-independent cell growth ability. Importantly, IMCE cells exposed to ZnO NPs subcutaneously grew and induced tumorigenesis in nude mice. In conclusion, exposure of ZnO NPs could induce malignant transformation of colonic mucosal cells through the CXCR2/NF-κB/STAT3/ERK and AKT pathways. We suggest that it was necessary to consider using the precautionary principle for gastrointestinal contact nanomaterials.
Показать больше [+] Меньше [-]Analysis of pesticide mixtures discharged to the lagoon of the Great Barrier Reef, Australia Полный текст
2020
Organisms and ecosystems are generally exposed to mixtures of chemicals rather than to individual chemicals, but there have been relatively few detailed analyses of the mixtures of pesticides that occur in surface waters. This study examined over 2600 water samples, analysed for between 21 and 47 pesticides, from 15 waterways that discharge to the lagoon of the Great Barrier Reef in Queensland, Australia between July 1, 2011 and June 30, 2015. Essentially all the samples (99.8%) contained detectable concentrations (>limit of detection) of pesticides and pesticide mixtures. Approximately, 10% of the samples contained no quantifiable (>limit of reporting) pesticides, 10% contained one quantifiable pesticide and 80% contained quantifiable mixtures of 2–20 pesticides. Approximately 82% of samples that contained quantifiable mixtures had more than two modes of action (MoAs), but only approximately 6% had five or more MoAs. The mode, average and median number of quantifiable pesticides in all the samples were 2, 5.1 and 4, respectively. The most commonly detected compounds both individually and in mixtures were the pesticides atrazine, diuron, imidacloprid, hexazinone, 2,4-D, and the degradation product desethylatrazine. The number of pesticides and modes of action of pesticides in mixtures differed spatially and were affected by land use. Waterways draining catchments where sugar cane was a major land use had mixtures with the most pesticides.
Показать больше [+] Меньше [-]A three-phase-successive partition-limited model to predict plant accumulation of organic contaminants from soils treated with surfactants Полный текст
2020
The application of surfactants is an effective way to inhibit the migration of organic contaminants (OCs) from soil to plants, and thus would be a great candidate method for producing safe agricultural products in organic-contaminated farmland. In this study, it was found that cetyltrimethyl ammonium bromide (CTMAB) reduced the OCs in cabbage by 22.0–64.1%, and those in lettuce by 18.8–36.5%. We developed a mathematical model to predict the accumulation of OCs in plants in the presence of surfactants. The successive partitioning of OCs among three phases, namely, soil, soil water and plant roots, was considered. The equilibrium of OC between the soil and soil water was scaled using the sorption coefficient of OCs on soils normalized by the soil organic carbon (Kₒc) and carbon-normalized OCs sorption coefficient with the sorbed surfactants (Kₛₛ). To precisely calculate the Kₒc and Kₛₛ, the bioavailable and bound OCs were measured using a sequential extraction method. Linear positive correlations between the logarithm of Kₒc (or Kₛₛ) and the logarithm of the octanol-water partition coefficient (log Kₒw) of OCs were established for laterite soils, paddy soils and black soils. In the presence of CTMAB, the equilibrium of OCs between the soil water and plant roots was scaled using the carbon-normalized OC sorption coefficient with the sorbed surfactants (Kₛf), whose logarithmic value was linearly correlated with the log Kₒw of the OCs. A three-phase-successive partition-limited model was developed based on these relationships, demonstrating an average prediction accuracy of 76.6 ± 36.8%. Our results indicated that the decrease in bioavailable OCs in soils and the increase in sorption of OCs on roots should be taken into consideration when predicting plant uptake. This research provides a validated mathematical model for predicting the concentration of OCs in plants in the presence of surfactants.
Показать больше [+] Меньше [-]Effect of nitrite addition on the two-phase anaerobic digestion of waste activated sludge: Optimization of the acidogenic phase and influence mechanisms Полный текст
2020
To simultaneously achieve biological denitrification and bio-energy recovery from sludge, the effects of nitrite on the two-phase anaerobic digestion (AD) of waste activated sludge were explored. Herein, effects of nitrite on the acidogenic phase are optimized, and the corresponding influence mechanisms are investigated. The experimental results show that the optimal nitrite treatment conditions for improving the acidogenic phase are an initial pH of 8.0, a nitrite addition concentration of 500 mg NO₂⁻-N·L⁻¹, and a fermentation time of six days. By comparing the effects of nitrite and nitrate on the acidogenic phase, it was found that it was the nitrite, not the nitrate, that significantly enhanced the sludge organic solubilization, hydrolysis, and acidification, which are primarily attributed to the redox property of nitrite. Based on an analysis of different forms of soluble nitrogen concentrations, there was no obvious accumulation of nitrite or nitrate during the acidogenic phase. An analysis of the methane production and the volatile solid (VS) degradation during the two-phase AD revealed that the nitrite improved the methane production from the methanogenic phase and enhanced the VS degradation of sludge during the entire two-phase AD process. These findings could provide references for simultaneously treating nitrite-rich wastewater and improving anaerobic sludge digestion via two-phase system.
Показать больше [+] Меньше [-]The role of miR-21 in nickel nanoparticle-induced MMP-2 and MMP-9 production in mouse primary monocytes: In vitro and in vivo studies Полный текст
2020
Mo, Yiqun | Zhang, Yue | Mo, Luke | Wan, Rong | Jiang, Mizu | Zhang, Qunwei
Exposure to metal nanoparticles causes both pulmonary and systemic effects. Nanoparticles can enter the circulation and act directly or indirectly on blood cells, such as monocytes. Monocytes/macrophages are among the first cells to home to inflammatory sites and play a key role in the immune response. Here we investigated the effects of nickel nanoparticles (Nano-Ni), partially [O]-passivated Nano-Ni (Nano-Ni-P), and carbon-coated Nano-Ni (Nano-Ni-C) on MMP-2 and MMP-9 production in mouse primary monocytes both in vitro and in vivo and explored the potential mechanisms involved. The dose- and time-response studies showed that exposure of primary monocytes from wild-type (WT) mice to 30 μg/mL of Nano-Ni for 24 h caused significant MMP-2 and MMP-9 production; therefore, these dose and time point were chosen for the following in vitro studies. Nano-Ni and Nano-Ni-P caused miR-21 upregulation, as well as MMP-2, MMP-9, TIMP-1 and TIMP-2 upregulation in monocytes from WT, but not miR-21 knock-out (KO), mice, indicating the important role of miR-21 in Nano-Ni-induced MMPs and TIMPs upregulation. However, Nano-Ni-C did not cause these effects, suggesting surface modification of Nano-Ni, such as carbon coating, alleviates Nano-Ni-induced miR-21 and MMPs upregulation. These results were further confirmed by in vivo studies by intratracheal instillation of nickel nanoparticles into WT and miR-21 KO mice. Finally, our results demonstrated that exposure of primary monocytes from WT mice to Nano-Ni and Nano-Ni-P caused downregulation of RECK, a direct miR-21 target, suggesting the involvement of miR-21/RECK pathway in Nano-Ni-induced MMP-2 and MMP-9 production.
Показать больше [+] Меньше [-]Numerical analysis and modeling of two-loop experimental setup for measurements of radon diffusion rate through building and insulation materials Полный текст
2020
Szajerski, Piotr | Zimny, Arkadiusz
Radon is a natural radioactive gas present in the environment, which is considered as the second most important lung cancer cause worldwide. Currently, radon gas is under focus and was classified as contaminant of emerging concern, which is responsible for serious biological/health effects in human. In presented work we propose the numerical model and analysis method for radon diffusion rate measurements and radon transport parameters determination. The experimental setup for radon diffusion was built in a classical, two chamber configuration, in which the radon source and outlet reservoirs are separated by the sample being tested. The main difference with previously known systems is utilization of only one radon detector, what was achieved by a careful characterization of the Rn-222 source and development of a numerical model, which allows for exact determination of radon transport parameters by fitting simulated radon concentration profile in the outlet reservoir to experimental data. For verification of the developed system, several insulation materials commonly used in building industry and civil engineering, as well as, common building materials (gypsum, hardened cement paste, concrete) were tested for radon diffusion rate through these barriers. The results of radon transmittance, permeability and diffusion coefficients for investigated materials are in compliance with values known previously from the literature. The analysis method is fast and efficient, and requires measurement period varying from a dozen or so hours up to 2–3 days depending on material properties. The described method is entirely based on a numerical analysis of the proposed differential equation model using freely available SCILAB software and experimental data obtained during sample measurements.
Показать больше [+] Меньше [-]Polybrominated diphenyl ethers and alternative halogenated flame retardants in mangrove plants from Futian National Nature Reserve of Shenzhen City, South China Полный текст
2020
Hu, Yongxia | Sun, Yuxin | Pei, Nancai | Zhang, Zaiwang | Li, Huawei | Wang, Weiwei | Xie, Jinli | Xu, Xiangrong | Luo, Xiaojun | Mai, Bixian
Halogenated flame retardants (HFRs) are ubiquitous in the environment, but little information is available about the bioaccumulation of HFRs in mangrove plants. In this study, three mangrove plant species were collected from Futian National Nature Reserve of Shenzhen City, South China to investigate the bioaccumulation of polybrominated diphenyl ethers (PBDEs) and several alternative halogenated flame retardants (AHFRs), including decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), hexabromobenzene (HBB), pentabromotoluene (PBT), tetrabromop-xylene (pTBX), pentabromoethylbenzene (PBEB) and dechlorane plus (DP). The mean concentrations of PBDEs, DBDPE, BTBPE, pTBX, PBT, PBEB, HBB and DP in mangrove plant species were 2010, 1870, 36.2, 18.7, 40.1, 17.8, 9.68 and 120 pg g⁻¹ dry weight, respectively. PBDEs were the dominant HFRs in mangrove plant tissues, followed by DBDPE. The relative abundance of BDE 209 in three mangrove plant tissues were much lower than those in sediments. Significant negative relationships between log root bioaccumulation factors and log Kₒw, and between log TFᵣ₋ₛ (from root to stem) and log Kₒw were observed, indicating that HFRs with low hydrophobicity were easily absorbed by mangrove roots and stems. A positive correlation between log TFₛ₋ₗ (from stem to leaf) and log Kₒw were found, suggesting that air-leaf exchange may occur in mangrove plants. This study highlights the uptake of HFRs by mangrove plants, which can be used as remediation for HFRs contamination in the environment.
Показать больше [+] Меньше [-]