Уточнить поиск
Результаты 991-1000 из 7,292
Treatment technologies for selenium contaminated water: A critical review Полный текст
2022
Li, Tianxiao | Xu, Hongxia | Zhang, Yuxuan | Zhang, Hanshuo | Hu, Xin | Sun, Yuanyuan | Gu, Xueyuan | Luo, Jun | Zhou, Dongmei | Gao, Bin
Selenium is an indispensable trace element for humans and other organisms; however, excessive selenium in water can jeopardize the aquatic environment. Investigations on the biogeochemical cycle of selenium have shown that anthropogenic activities such as mining, refinery, and coal combustion mainly contribute to aquatic selenium pollution, imposing tremendous risks on ecosystems and human beings. Various technologies thus have been developed recently to treat selenium contaminated water to reduce its environmental impacts. This work provides a critical review on the applications, characteristics, and latest developments of current treatment technologies for selenium polluted water. It first outlines the present status of the characteristics, sources, and toxicity of selenium in water. Selenium treatment technologies are then classified into three categories: 1) physicochemical separation including membrane filtration, adsorption, coagulation/precipitation, 2) redox decontamination including chemical reduction and catalysis, and 3) biological transformation including microbial treatment and constructed wetland. Details of these methods including their overall efficiencies, applicability, advantages and drawbacks, and latest developments are systematically analyzed and compared. Although all these methods are promising in treating selenium in water, further studies are still needed to develop sustainable strategies based on existing and new technologies. Perspectives on future research directions are laid out at the end.
Показать больше [+] Меньше [-]Novel delipidated chicken feather waste-derived carbon-based molybdenum oxide nanocomposite as efficient electrocatalyst for rapid detection of hydroquinone and catechol in environmental waters Полный текст
2022
Ganesan, Sivarasan | Sivam, Sadha | Elancheziyan, Mari | Senthilkumar, Sellappan | Ramakrishan, Sankar Ganesh | Soundappan, Thiagarajan | Ponnusamy, Vinoth Kumar
Chicken poultry industry produces a vast amount of feather waste and is often disposed into landfills, creating environmental pollution. Therefore, we explored the valorization of chicken feather waste into lipids and keratinous sludge biomass. This study demonstrates the successful utilization of keratinous sludge biomass as a unique precursor for the facile preparation of novel keratinous sludge biomass-derived carbon-based molybdenum oxide (KSC@MoO₃) nanocomposite material using two-step (hydrothermal and co-pyrolysis) processes. The surface morphology and electrochemical properties of as-prepared nanocomposite material were analyzed using HR-SEM, XRD, XPS, and cyclic voltammetric techniques. KSC@MoO₃ nanocomposite exhibited prominent electrocatalytic behavior to simultaneously determine hydroquinone (HQ) and catechol (CC) in environmental waters. The as-prepared electrochemical sensor showed excellent performance towards the detection of HQ and CC with broad concentration ranges between 0.5–176.5 μM (HQ and CC), and the detection limits achieved were 0.063 μM (HQ) and 0.059 μM (CC). Furthermore, the developed modified electrode has exhibited excellent stability and reproducibility and was also applied to analyze HQ and CC in environmental water samples. Results revealed that chicken feather waste valorization could result in sustainable biomass conversion into a high-value nanomaterial to develop a cost-effective electrochemical environmental monitoring sensor and lipids for biofuel.
Показать больше [+] Меньше [-]Nano agrochemical zinc oxide influences microbial activity, carbon, and nitrogen cycling of applied manures in the soil-plant system Полный текст
2022
Shah, Ghulam Mustafa | Ali, Hifsa | Ahmad, Iftikhar | Kāmrān, Muḥammad | Hammad, Mohkum | Shah, Ghulam Abbas | Bakhat, Hafiz Faiq | Waqar, Atika | Guo, Jianbin | Dong, Renjie | Rashid, Muhammad Imtiaz
The widespread use of nano-enabled agrochemicals in agriculture for remediating soil and improving nutrient use efficiency of organic and chemical fertilizers is increasing continuously with limited understanding on their potential risks. Recent studies suggested that nanoparticles (NPs) are harmful to soil organisms and their stimulated nutrient cycling in agriculture. However, their toxic effects under natural input farming systems are just at its infancy. Here, we aimed to examine the harmful effects of nano-agrochemical zinc oxide (ZnONPs) to poultry (PM) and farmyard manure (FYM) C and N cycling in soil-plant systems. These manures enhanced microbial counts, CO₂ emission, N mineralization, spinach yield and N recovery than control (unfertilized). Soil applied ZnONPs increased labile Zn in microbial biomass, conferring its consumption and thereby reduced the colony-forming bacterial and fungal units. Such effects resulted in decreasing CO₂ emitted from PM and FYM by 39 and 43%, respectively. Further, mineralization of organic N was reduced from FYM by 32%, and PM by 26%. This process has considerably decreased the soil mineral N content from both manure types and thereby spinach yield and plant N recoveries. In the ZnONPs amended soil, only about 23% of the applied total N from FYM and 31% from PM was ended up in plants, whereas the respective fractions in the absence of ZnONPs were 33 and 53%. Hence, toxicity of ZnONPs should be taken into account when recommending its use in agriculture for enhancing nutrient utilization efficiency of fertilizers or soil remediation purposes.
Показать больше [+] Меньше [-]Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives Полный текст
2022
Gong, Yishu | Wang, Yin | Lin, Naipeng | Wang, Ruotong | Wang, Meidan | Zhang, Xiaodong
The existence of heavy metals and emerging organic contaminants in wastewater produces serious toxic residues to the environment. Developing cheap and efficient materials to remove these persistent pollutants is crucial. Iron-based materials are cost-effective and environmentally friendly catalysts, and their applications in the environmental field deserve attention. This paper critically reviewed the removal mechanisms of heavy metals and emerging organic pollutants by different influencing factors. The removal of pollutants (heavy metals and emerging organic pollutants) in a multi-component system was analyzed in detail. The mechanisms of synergism, antagonism and non-interference were discussed. This paper had a certain reference value for the research of wastewater remediation technology which could simultaneously remove various pollutants by iron-based materials.
Показать больше [+] Меньше [-]Marine shrimps as biomonitors of the Fundão (Brazil) mine dam disaster: A multi-biomarker approach Полный текст
2022
Maraschi, Anieli C. | Marques, Joseane A. | Costa, Simone R. | Vieira, Carlos E.D. | Geihs, Márcio A. | Costa, Patrícia G. | Martins, Camila de M.G. | Sandrini, Juliana Z. | Bianchini, Adalto | Souza, Marta M.
The disruption of the Fundão dam released 43 million m³ of mine tailings into the Doce River until it flowed into the ocean through the estuary. The mine tailing changed the composition of metals in water and sediment, creating a challenging scenario for the local biota. We used multivariate analyzes and the integrated biomarker response index (IBR) to assess the impact of mine tailings on the bioaccumulation profile (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) as well as the biomarkers response in gills, hepatopancreas and muscle of shrimps sampled from different sectors during two dry seasons (dry1 and dry2) (Sep/Oct 2018; 2019) and two wet seasons (wet1 and wet2) (Jan/feb 2019; 2020). There was seasonal and local effect under bioaccumulation and biomarker response revealing that the pattern responses seen in each sector sampled changed according to the season. The greater IBR added to the strong association among the most metals tissue content (Cd, Cr, Cu and Mn) and sectors sampled during dry 1 suggests greater bioavailability of these metals to the environment in this period. Estuarine sectors stand out for high Fe bioavailability, especially during wet1, which seems to be associated with greater metallothionein content in hepatopancreas of shrimps. Native species of marine shrimps proved to be successful indicators of sediment quality besides being sensitive to water contamination by metals. The multi-biomarkers approach added to multivariate analysis supports the temporal and seasonal effects, signalizing the importance of continuous monitoring of the estuarine region to better know about the bioavailability of these metals, mainly Fe, and their long-term effects on the local biota.
Показать больше [+] Меньше [-]The role of dietary factors on blood lead concentration in children and adolescents - Results from the nationally representative German Environmental Survey 2014–2017 (GerES V) Полный текст
2022
Hahn, Domenica | Vogel, Nina | Höra, Christian | Kämpfe, Alexander | Schmied-Tobies, Maria | Göen, Thomas | Greiner, Annette | Aigner, Annette | Kolossa-Gehring, Marike
In industrialized nations, human lead exposure has decreased significantly in recent decades. Nevertheless, due to its toxic effects, this heavy metal remains a public health concern with children and adolescents being particularly at risk. In Europe nowadays, oral intake via food and drinking water is the predominant exposure pathway for lead. The objective of the present study was to investigate the association between dietary factors and blood lead (PbB) level of 3- to 17-year-old children and adolescents living in Germany, using data from the fifth German Environmental Health Survey (GerES V) and the Child and Adolescent Health Survey (KiGGS Wave 2). GerES V and KiGGS Wave 2 are two national population-representative studies conducted between 2014 and 2017, including measurement of lead concentrations in blood from 720 children and adolescents aged 3–17 years (mean age = 10.21, SD age = 4.36). Using multiple linear regression, sociodemographic and environmental characteristics as well as dietary factors could be identified as significant exposure determinants of PbB concentrations. Lead intake via domestic tap water was the strongest predictor of elevated PbB levels with 27.6% (p-value< .001) higher concentrations of highest compared to none lead intake via tap water. Other foods which were found to be relevant to PbB levels were meat, fruit, and fruit juice. While meat or fruit consumption were each associated with about 13% (p-value < .05) lower PbB levels, fruit juice drinking was associated with up to 12.2% (p-value = .04) higher PbB levels. In conclusion, results indicate the importance of dietary habits for lead exposure in children and adolescents. To protect vulnerable groups, it is recommended that future research and lead-reducing measures pay more attention to dietary links.
Показать больше [+] Меньше [-]Synergistic effects of Cd-loving Bacillus sp. N3 and iron oxides on immobilizing Cd and reducing wheat uptake of Cd Полный текст
2022
Han, Hui | Wu, Xuejiao | Hui, Ruiqing | Xia, Xing | Chen, Zhaojin | Yao, Lunguang | Yang, Jianjun
Iron oxides and microorganisms are important soil components that profoundly affect the transformation and bioavailability of heavy metals in soils. Here, batch and pot experiments were conducted to investigate the immobilization mechanisms of Cd by Cd-loving Bacillus sp. N3 and ferrihydrite (Fh) as well as their impacts on Cd uptake by wheat and bacterial community composition in wheat rhizospheric soil. The results showed that the combination of strain N3 with Fh could immobilize more Cd compared to strain N3 and Fh, respectively. Furthermore, strain N3 facilitated Cd retention on Fh, which synergistically reduced the concentration of DTPA extracted Cd in the soil and decreased Cd content (57.1%) in wheat grains. Moreover, inoculation with strain N3 increased the complexity of the co-occurrence network of the bacterial community in rhizospheric soil, and the abundance of beneficial bacteria with multipel functions including heavy metal immobilization, dissimilatory iron reduction, and plant growth promotion. Overall, this study demonstrated the enrichment of strain N3 and iron oxides, together with increased soil pH, synergistically immobilized soil Cd, which strongly suggested inoculation with Cd-loving strains could be a promising approach to immobilize Cd and reduce wheat uptake of Cd, particular for soils rich in iron oxides.
Показать больше [+] Меньше [-]Microplastics trapped in soil aggregates of different land-use types: A case study of Loess Plateau terraces, China Полный текст
2022
Cheung, Joys H. Y. | Huiyan, | An, Shaoshan | Zhao, Junfeng | Xiao, Li | Li, Haohao | Huang, Qian
Land-use types may affect soil aggregates' stability and organic carbon (OC) distribution characteristics, but little is known about the effects on the distribution characteristics of microplastics (MPs) in the aggregates. Hence, the MPs abundance of soil aggregates and analyzed aggregates’ stability, composition, and OC content from two soil layers of four land-use types in Gansu Province were investigated in this study. The total MPs abundances in woodland, farmland (wheat, maize, and potato), orchard, and intercropping (potato + apple orchard) of top and deep soils were 1383.3 and 1477.9, 1324.6 and 931.1, 1757.1 and 1930.9, 2127.2 and 1998.0, 1335.9 and 886.7, and 1777.5 and 1683.3 items kg⁻¹, respectively. The largest MPs abundance was detected in the >5 mm fractions of topsoil in potato (3077.3 items kg⁻¹), followed by maize (3044.7 items kg⁻¹) and intercropping (2718.4 items kg⁻¹). In the topsoil, the total MPs abundance increased significantly with decreasing aggregate stability, and also was positively correlated with bulk density, microbial biomass, and total nitrogen contents of bulk soil. Summarizing, the abundance distribution of MPs correlates with the soil aggregate characteristics of the different land-use types.
Показать больше [+] Меньше [-]Occurrence and distribution of organophosphate flame retardants in seawater and sediment from coastal areas of the East China and Yellow Seas Полный текст
2022
Fang, Lidan | Liu, Aifeng | Zheng, Minggang | Wang, Ling | Hua, Yi | Pan, Xin | Xu, Hongyan | Chen, Xiangfeng | Lin, Yongfeng
Organophosphates (OPEs) are manmade organic pollutants that are widely used as flame retardants, plasticizers, and antifoaming and hydraulic agents. In this study, seven OPEs in seawater and sediment from the Yellow Sea and East China Sea were determined to study the distribution and diffusion behavior, and to evaluate the environmental risks. The ΣOPEs in the seawater and sediments ranged from below the method detection limit (<MDL) to 497.40 ng/L and from < MDL to 66.50 ng/g dw, respectively. Tri-n-butyl phosphate (TnBP), tris-(1, 3-Dichloro-2-Propyl) phosphate (TDCPP), and tri-meta-cresyl phosphate (TmCP) were the dominant OPEs in the seawater and sediments. OPEs were mainly distributed in coastal areas and the South Yellow Sea, indicating that they are mainly affected by land-based pollution and ocean currents. Fugacity analysis shows that tri-para-cresyl phosphate (TpCP) was in a state of equilibrium, while TDCPP, TnBP, and TmCP other OPEs tended to diffuse from sediment to water. The diffusion behavior of OPEs is mainly affected by their chemical properties. Hazard quotient (HQ) values of TmCP and TpCP in sediment samples were >1.0, indicating high ecological risks to aquatic organisms.
Показать больше [+] Меньше [-]Organic aerosol compositions and source estimation by molecular tracers in Dushanbe, Tajikistan Полный текст
2022
Chen, Pengfei | Kang, Shichang | Zhang, Lanxin | Abdullaev, Sabur F. | Wan, Xin | Zheng, Huijun | Maslov, Vladimir A. | Abdyzhapar uulu, Salamat | Safarov, Mustafo S. | Tripathee, Lekhendra | Li, Yizhong
To elucidate the molecular composition and sources of organic aerosols in Central Asia, carbonaceous compounds, major ions, and 15 organic molecular tracers of total suspended particulates (TSP) were analyzed from September 2018 to August 2019 in Dushanbe, Tajikistan. Extremely high TSP concentrations (annual mean ± std: 211 ± 131 μg m⁻³) were observed, particularly during summer (seasonal mean ± std: 333 ± 183 μg m⁻³). Organic carbon (OC: 11.9 ± 7.0 μg m⁻³) and elemental carbon (EC: 5.1 ± 2.2 μg m⁻³) exhibited distinct seasonal variations from TSP, with the highest values occurring in winter. A high concentration of Ca²⁺ was observed (11.9 ± 9.2 μg m⁻³), accounting for 50.8% of the total ions and reflecting the considerable influence of dust on aerosols. Among the measured organic molecular tracers, levoglucosan was the predominant compound (632 ± 770 ng m⁻³), and its concentration correlated significantly with OC and EC during the study period. These findings highlight biomass burning (BB) as an important contributor to the particulate air pollution in Dushanbe. High ratios of levoglucosan to mannosan, and syringic acid to vanillic acid suggest that mixed hardwood and herbaceous plants were the main burning materials in the area, with softwood being a minor one. According to the diagnostic tracer ratio, OC derived from BB constituted a large fraction of the primary OC (POC) in ambient aerosols, accounting for an annual mean of nearly 30% and reaching 63% in winter. The annual contribution of fungal spores to POC was 10%, with a maximum of 16% in spring. Measurements of plant debris, accounting for 3% of POC, divulged that these have the same variation as fungal spores.
Показать больше [+] Меньше [-]