Уточнить поиск
Результаты 1-8 из 8
Culture-independent techniques applied to food industry water surveillance — A case study Полный текст
2010
Varela Villarreal, Jessica | Schwartz, Thomas | Obst, Ursula
Culture-independent techniques were used for the detection of pathogenic bacteria in drinking water at potentially critical control points along the production lines at a German dairy company and a Spanish dry cured ham company. Denaturing gradient gel electrophoresis (DGGE) was used to describe bacterial population shifts indicating biological instability in the drinking water samples. Autochthonous bacteria were identified by sequencing the excised DGGE DNA bands. More specifically, real-time PCR was applied to detect a number of pathogenic bacteria, i.e. Listeria monocytogenes, Mycobacterium avium subsp. paratuberculosis, Campylobacter jejuni, Enterococcus spp., Salmonella spp, Escherichia coli, and Pseudomonas aeruginosa. Due to the detection limits of the real-time PCR method, a specific protocol was established in order to meet the technical detection requirements and to avoid unwanted polymerase inhibitions. Autochthonous bacterial populations were found to be highly stable at most of the sampling points. Only one sampling point exhibited population shifts at the German dairy company. Enterococci and P. aeruginosa were detected in some water samples from these companies by molecular biology detection methods, but not by conventional culturing methods. Some opportunistic bacteria as Enterobacter sp., Acinetobacter, Sphingomonas sp. and non-pathogenic Bacillus, were also detected after DNA sequencing of DGGE bands.
Показать больше [+] Меньше [-]Bacterial contamination of drinking water and food utensils: Impacts of piped water on child health in north-western Bangladesh Полный текст
2017
Hasan, Mohammad Monirul | Gerber, Nicolas
We investigate the impacts of access to piped water on drinking water quality, sanitation, hygiene and health outcomes in marginalized rural households of north-western Bangladesh, using a quasi-experimental setup. A government organization – the Barindra Multipurpose Development Authority (BMDA) – established a piped water network to connect rural households with the deep ground water resources and improve their access to potable water. Using propensity score matching, the study compares a treatment and a control group of households to identify gains in water-sanitation, hygiene and health outcomes. In terms of water safety, we find no improvement in the quality of drinking water, measured by E. coli count per 100 ml of water at the point of use (i.e. the pots and jars used to store it). Food utensils tested positive for E. coli in both the control and treatment group, thus showing no improvement through the BMDA intervention. Hygiene behavior such as handwashing with soap after defecation or before feeding children also does not improve. Finally, we do not find evidence of health benefits, such as decreased diarrhea incidence of under-five children or improved nutritional outcomes such as stunting, underweight and wasting. Although access to BMDA piped water in the premises is subject to a fee, it seems this incentive mechanism is not strong enough to improve water behavior or its outcomes: treated households are as poor as the non-treated in terms of maintaining hygiene and water quality, possibly because of lack of information.
Показать больше [+] Меньше [-]Quantifying and modelling the inactivation of Listeria monocytogenes by electrolyzed water on food contact surfaces Полный текст
2021
Possas, Arícia | Perez-Rodriguez, Fernando | Tarlak, Fatih | García-Gimeno, Rosa María
The efficacy of electrolyzed water (EW) to inactivate Listeria monocytogenes on stainless steel surfaces was evaluated and modelled in the present study. L. monocytogenes was inoculated on stainless steel coupons and subsequently subjected to Neutral EW (NEW, pH = 7.0) and Slightly Acid EW (SAEW, pH = 5.0) with different Available Chlorine Concentration (ACC, 50–200 mg/L) for different exposure times (0–6 min). The number of viable cells on coupons decreased as the exposure time increased at all ACC concentrations. Treatments with SAEW resulted in higher reductions of L. monocytogenes, i.e., 2.30 ± 0.16 to 5.64 ± 0.11 log cfu/cm², in comparison with NEW treatments (1.55 ± 0.11 to 5.22 ± 0.12 log cfu/cm²), probably due to the synergistic bactericidal effect between the acidic pH, higher oxidation-reduction potential and the effective form of chlorine, reported in previous studies. Since SAEW was the most effective against L. monocytogenes, two approaches were tested to model the survival data: the one- and two-step modelling procedures. The Weibull model was suitable to describe the survival data and both approaches produced suitable survival models (adj-R²>0.92 and MSE<0.2). EW is effective in reducing bacterial contamination on food-contact surfaces and the survival data and models derived from this study are relevant to optimize its use as an environment-friendly sanitizer in the food industry.
Показать больше [+] Меньше [-]Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water Полный текст
2015
Singh, Jyoti | Sharma, Shivesh | Nara, Seema
Lateral flow immunoassays (LFIAs) are advantageous over conventional detection methods in terms of their simplicity and rapidity. These assays have been reported using various types of labels but colloidal gold nanoparticles are still the preferred choice as a label because of their easy synthesis, visual detection and stability. Bacterial contamination of food and drinking water is a major threat and hindrance towards ensuring food and water safety. Enterobacteriaceae family members are mainly transmitted by the consumption of contaminated water and food and implicated in various food or water borne infections. The LFIAs have been popularly used for detection of bacterial cells in different matrices. Therefore, this review intends to provide an analysis of the gold nanoparticle based lateral flow assays developed for detecting enterobacteriaceae family members in food and water samples. The review includes detailed data and discusses the factors that influence the performance of LFIAs and their shortcomings.
Показать больше [+] Меньше [-]Reduction of Escherichia coli O157:H7 on Produce by Use of Electrolyzed Water under Simulated Food Service Operation Conditions
2009
Pangloli, Philipus | Hung, Yen-Con | Beuchat, Larry R. | King, C Harold | Zhao, Zhi-Hui
Treatment of fresh fruits and vegetables with electrolyzed water (EW) has been shown to kill or reduce foodborne pathogens. We evaluated the efficacy of EW in killing Escherichia coli O157:H7 on iceberg lettuce, cabbage, lemons, and tomatoes by using washing and/or chilling treatments simulating those followed in some food service kitchens. Greatest reduction levels on lettuce were achieved by sequentially washing with 14-A (amperage) acidic EW (AcEW) for 15 or 30 s followed by chilling in 16-A AcEW for 15 min. This procedure reduced the pathogen by 2.8 and 3.0 log CFU per leaf, respectively, whereas washing and chilling with tap water reduced the pathogen by 1.9 and 2.4 log CFU per leaf. Washing cabbage leaves for 15 or 30 s with tap water or 14-A AcEW reduced the pathogen by 2.0 and 3.0 log CFU per leaf and 2.5 to 3.0 log CFU per leaf, respectively. The pathogen was reduced by 4.7 log CFU per lemon by washing with 14-A AcEW and 4.1 and 4.5 log CFU per lemon by washing with tap water for 15 or 30 s. A reduction of 5.3 log CFU per lemon was achieved by washing with 14-A alkaline EW for 15 s prior to washing with 14-A AcEW for 15 s. Washing tomatoes with tap water or 14-A AcEW for 15 s reduced the pathogen by 6.4 and 7.9 log CFU per tomato, respectively. Application of AcEW using procedures mimicking food service operations should help minimize cross-contamination and reduce the risk of E. coli O157:H7 being present on produce at the time of consumption.
Показать больше [+] Меньше [-]Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens
2004
Nasar-Abbas, S.M. | Halkman, A.K.
The antimicrobial effect of water extracts of sumac (Rhus coriaria L.) at concentrations of 0.1%, 0.5%, 1.0%, 2.5% and 5.0% (w/v), non-neutralized and after neutralization to pH 7.2 +/- 0.1, was studied on the growth of 12 bacterial strains (six Gram positive strains and six Gram negative strains), mostly food borne including pathogens. It was found to be effective against all the test organisms with Gram positive strains being more sensitive than Gram negative strains. Significant differences (P<0.01) were found among the bacteria and between the non-neutralized and neutralized extracts with non-neutralized being more effective against all the bacteria. The minimal inhibitory concentration (MIC) of the extract for each bacterial strain was studied by a gradient plate method. Among the Gram positive organisms, Bacillus species (Bacillus cereus, Bacillus megaterium, Bacillus subtilis, and Bacillus thuringiensis) were found to be the most sensitive showing MICs of 0.25-0.32% (after 24 h incubation) followed by Staphylococcus aureus (0.49%), while Listeria monocytogenes was found to be the least sensitive demonstrating a MIC of 0.67%. Of the Gram negative organisms, Salmonella enteritidis was found to be the most resistant with a MIC of 0.67% followed by Escherichia coli Type I, E. coli O157:H7, Proteus vulgaris and Hafnia alvei having MICs of 0.63%, 0.60%, 0.55% and 0.45%, respectively; whereas Citrobacter freundii was found to be the least resistant surviving up to 0.42%. Some loss of antimicrobial activity was, however, observed after incubation for 3 days. Bacteriostatic/bactericidal effects of sumac, as studied by enumerating survival by the viable count technique after 1 h direct contact of each microorganism with various concentrations of sumac extract, revealed a 4-5 log cycle reduction in Bacillus spp. and 2-3 log cycle reduction in other bacteria tested with 1.0% sumac extract.
Показать больше [+] Меньше [-]Comparison of the BAX System PCR Method to Brazil's Official Method for the Detection of Salmonella in Food, Water, and Environmental Samples
2008
Tomazelli, Ingrid Boesche | Freitas, Josinete Barros de | Fabbi, Leania Maria | Filipini, Terezinha Agnese | Silva, Claudia Maria da | Bedin, Janaina Mussnich | Duarte, Dalila Angelica Moliterno | Santos, Amaury dos | Baccarin, Aldo | Higa, Ligia Rossi Garcia | Yano, Dirce Mithico Yamaoka | Killner, Mario | Frezza, Andrea Leao Cameiro | Abecia, Eduardo Carlos de Gosztonyi | Tronco, Vania Maria | Tomazelli Junior, Osmar
A two-stage study compared the BAX system PCR method with the reference culture method used by the Brazilian Ministry of Agriculture and Food Supply for the detection of Salmonella in food, water, and environmental samples. In stage 1, fish matrix samples (n = 258) were spiked at several levels with Salmonella and a combination of Salmonella and non-Salmonella competitive organisms. Replicates were analyzed by the BAX system PCR method and the reference method with comparable results (sensitivity >or=97.5%, specificity >or=83.3%) from both methods at the limit of detection. In stage 2, a total of 1,988 samples with 70 product types were analyzed with both methods. Five laboratories were involved in this study, and the samples used were from routine analyses. The BAX system PCR method was shown to be comparable to the reference method, with a limit of detection of 1.0 to 2.0 CFU/25 g of sample. Analysis of the results obtained in stage 2 and in the combination of stages 1 and 2 for the BAX system showed the following performance: sensitivity >or=99.0%, specificity >or=97.2%, false-negative rate <or=1.1%, and false-positive rate <or= 2.8%. Therefore, the BAX system appears to be equivalent to the reference method, with >or=97.3% agreement.
Показать больше [+] Меньше [-]Viability of Salmonella Typhimurium biofilms on major food-contact surfaces and eggshell treated during 35 days with and without water storage at room temperature Полный текст
2020
Salmonella is one of the main foodborne pathogens that affect humans and farm animals. The Salmonella genus comprises a group of food-transmitted pathogens that cause highly prevalent foodborne diseases throughout the world. The aim of this study was to appraise the viability of Salmonella Typhimurium biofilm under water treatment at room temperature on different surfaces, specifically stainless steel (SS), plastic (PLA), rubber (RB), and eggshell (ES). After 35 D, the reduction of biofilm on SS, PLA, RB, and ES was 3.35, 3.57, 3.22, and 2.55 log CFU/coupon without water treatment and 4.31, 4.49, 3.50, and 1.49 log CFU/coupon with water treatment, respectively. The dR value (time required to reduce bacterial biofilm by 99% via Weibull modeling) of S. Typhimurium without and with water treatment was the lowest on PLA (176.86 and 112.17 h, respectively) and the highest on ES (485.37 and 2,436.52 h, respectively). The viability of the S. Typhimurium on ES and the 3 food-contact surfaces was monitored for 5 wk (35 D). The results of this study provide valuable information for the control of S. Typhimurium on different surfaces in the food industry, which could reduce the risk to consumers.
Показать больше [+] Меньше [-]