Уточнить поиск
Результаты 1-4 из 4
Characteristic of food waste gasification in supercritical water for hydrogen production Полный текст
2022
Cao, Wen | Wei, Yimeng | Jin, Hui | Liu, Shi | Li, Linhu | wei, Wenwen | Guo, Liejin
In this work, an experimental study was done in an autoclave reactor to evaluate the gasification characteristics of food waste in supercritical water. The effects of reaction temperature (550–700 °C), residence time (0–30 min), feedstock concentration (5 wt%-9 wt.%), catalyst type (K₂CO₃, Na₂CO₃, and Raney-Ni), and catalyst loading (Catalyst/dry feedstock 0.5–2) on gas production and liquid products were investigated. The results indicated that higher reaction temperature and longer residence time positively promoted food waste gasification. The organic compound species in liquid products decreased quickly to form gas products with the increased temperature, and the aromatic compounds were the key organic matter for the complete gasification of food waste. The addition of catalysts could significantly convert more liquid intermediates into gaseous products, and improve the gasification performance of food waste. The catalytic performance of catalysts can be ranked as K₂CO₃> Raney-Ni > Na₂CO₃. H₂ yield and carbon gasification efficiency increased with the increase of K₂CO₃ loading, reaching the highest values of 38.29 mol kg⁻¹ and 95.84% with the addition of 14 wt% K₂CO₃, respectively. This work indicated that food waste could be well treated and utilized as an energy resource to produce H₂ by SCWG technology.
Показать больше [+] Меньше [-]Production of H2-rich syngas from gasification of unsorted food waste in supercritical water Полный текст
2020
Su, Hongcai | Kanchanatip, Ekkachai | Wang, Defeng | Zheng, Rendong | Huang, Zhicheng | Chen, Yang | Mubeen, Ishrat | Yan, Mi
In China, waste sorting practice is not strictly followed, plastics, especially food packaging, are commonly mixed in food waste. Supercritical water gasification (SCWG) of unsorted food waste was conducted in this study, using model unsorted food waste by mixture of pure food waste and plastic. Different operating parameters including reaction temperature, residence time, and feedstock concentration were investigated. Moreover, the effect of three representative food additives namely NaCl, NaHCO₃ and Na₂CO₃ were tested in this work. Finally, comparative analysis about SCWG of unsorted food waste, pure food waste, and plastic was studied. It was found that higher reaction temperature, longer residence time and lower feedstock concentration were advantageous for SCWG of unsorted food waste. Within the range of operating parameters in this study, when the feedstock concentration was 5 wt%, the highest H₂ yield (7.69 mol/kg), H₂ selectivity (82.11%), total gas yield (17.05 mol/kg), and efficiencies of SCWG (cold gas efficiency, gasification efficiency, carbon gasification efficiency, and hydrogen gasification efficiency) were obtained at 480 °C for 75 min. Also, the addition of food additives with Na⁺ promoted the SCWG of unsorted food waste. The Na₂CO₃ showed the best catalytic performance on enhancement of H₂ and syngas production. This research demonstrated the positive effect of waste sorting on the SCWG of food waste, and provided novel results and information that help to overcome the problems in the process of food waste treatment and accelerate the industrial application of SCWG technology in the future.
Показать больше [+] Меньше [-]Combined liquid phase microextraction and fiber-optics-based cuvetteless micro-spectrophotometry for sensitive determination of ammonia in water and food samples by the indophenol reaction Полный текст
2021
Jain, Archana | Soni, Soumitra | Verma, K. K.
The Berthelot reaction for ammonia is revisited with the aim of miniaturization and addressing interferences as encountered with food and water samples. Headspace single drop microextraction of ammonia in phosphoric acid served to attain selectivity in complex matrices, and liquid-liquid microextraction of red or blue indophenol species into 1-octanol-isooctane (60:40, v/v) resulted into high sensitivity. Fiber-optics-based cuvetteless micro-spectrophotometry has been used for colorimetric determination on microliter volumes of extract. The linear dynamic range, limit of detection and enrichment factor have been found to be 0.2–3 mg kg⁻¹, 0.14 mg kg⁻¹ and 38, respectively, measuring red species for milk, cheese and beer (4.9–5.5% error; 4.8–6.3% RSD; n = 5); and 5–400 µg L⁻¹, 0.4 µg L⁻¹ and 137, respectively, measuring blue species for water samples (3.3–5.7% error; 3.6–6.8% RSD; n = 5). A plausible reaction scheme has been proposed for nitroprusside catalysis in indophenol reaction.
Показать больше [+] Меньше [-]One-Step Facile Synthesis of Nitrogen-Doped Carbon Dots: A Ratiometric Fluorescent Probe for Evaluation of Acetylcholinesterase Activity and Detection of Organophosphorus Pesticides in Tap Water and Food Полный текст
2019
Huang, Shan | Yao, Jiandong | Chu, Xu | Liu, Yi | Xiao, Qi | Zhang, Yue
Evaluation of acetylcholinesterase (AChE) activity and determination of organophosphorus pesticides (OPs) are of great importance for the clinical diagnosis of several serious diseases correlated with their variations in human blood serum. In this study, a highly selective and sensitive ratiometric fluorescent probe was innovatively fabricated for the evaluation of AChE activity and the determination of OPs in tap water and food on the basis of the inner filter effect (IFE) between nitrogen-doped carbon dots (N-CDs) and 2,3-diaminophenazine (DAP). N-CDs were synthesized via a one-pot hydrothermal method by using pancreatin and 1,2-ethanediamine as precursors. N-CDs showed excellent fluorescence properties and negligible cytotoxicity on human cervical carcinoma HeLa cells and human embryonic kidney 293T cells, suggesting their further biological applications. Upon the addition of AChE and choline oxidase, acetylcholine was catalyzed to produce choline that was further oxidized to produce H₂O₂. In the presence of horseradish peroxidase, o-phenylenediamine reacted with H₂O₂ to produce fluorescent DAP. Therefore, a ratiometric fluorescent probing platform existed via IFE between N-CDs with a fluorescence signal at 450 nm and DAP with a fluorescence signal at 574 nm. OPs irreversibly impeded the catalytic activity of AChE, finally leading to the decrease of DAP amount and the variation of ratiometric fluorescent signal. Under optimal conditions, such a fluorescent probe showed relatively low detection limits of 0.38 U/L for AChE, 3.2 ppb for dichlorvos, and 13 ppb for methyl-parathion. Practical application of this ratiometric fluorescent probe to detect OPs was further verified in tap water and food samples with satisfying results that were highly consisted with the results obtained by GC–MS.
Показать больше [+] Меньше [-]