Уточнить поиск
Результаты 1-3 из 3
Surface Water Linkages Regulate Trophic Interactions in a Groundwater Food Web Полный текст
2011
Foulquier, Arnaud | Malard, Florian | Mermillod-Blondin, Florian | Montuelle, Bernard | Doledec, S. (Sylvain) | Volat, Bernadette | Gibert, Janine
Groundwaters are increasingly viewed as resource-limited ecosystems in which fluxes of dissolved organic carbon (DOC) from surface water are efficiently mineralized by a consortium of microorganisms which are grazed by invertebrates. We tested for the effect of groundwater recharge on resource supply and trophic interactions by measuring physico-chemistry, microbial activity and biomass, structure of bacterial communities and invertebrate density at three sites intensively recharged with surface water. Comparison of measurements made in recharge and control well clusters at each site showed that groundwater recharge significantly increased fluxes of DOC and phosphate, elevated groundwater temperature, and diminished dissolved oxygen (DO). Microbial biomass and activity were significantly higher in recharge well clusters but stimulation of autochthonous microorganisms was not associated with a major shift in bacterial community structure. Invertebrate assemblages were not significantly more abundant in recharge well clusters and did not show any relationship with microbial biomass and activity. Microbial communities were bottom-up regulated by DOC and nutrient fluxes but trophic interactions between microorganisms and invertebrates were apparently limited by environmental stresses, particularly DO depletion and groundwater warming. Hydrological connectivity is a key factor regulating the function of DOC-based groundwater food webs as it influences both resource availability for microorganisms and environmental stresses which affect energy transfer to invertebrates and top-down control on microorganisms.
Показать больше [+] Меньше [-]Natural food evaluation and water quality in zero water exchange culture of Litopenaeus vannamei fertilized with wheat bran Полный текст
2009
Campos, Susmara Silva | Silva, Ugo Lima | Lúcio, Maria Zita Tabosa | Correia, Eudes de Souza
The aim of this study was to analyze the influence of organic fertilizer on the availability of natural food (plankton and benthos) and water quality. Two fertilization protocols were adopted using inorganic and organic fertilizers with shrimp (stocked treatment) and their controls (unstocked treatment). Experimental units consisted of 12 circular fiberglass tanks (500 l) with estuarine sediment, individual aeration and no water exchange. In stocked treatments were used 40 juveniles/m², and they were fed with 35% crude protein marine shrimp ration, three times a day. Under the organic fertilization protocol, the plankton showed higher abundance of Nitzschia and rotifers, the phytobenthos consisted mainly of Nitzschia, Amphiprora and Oscillatoria, the epibenthos was represented mainly by nematodes and rotifers, and the macro-invertebrates were mainly oligochaetes. In relation to inorganic fertilization, the plankton was represented mainly by Coscinodiscus and rotifers, the phytobenthos consisted mainly of Amphiprora and Oscillatoria, the epibenthos was represented mainly by nematodes and rotifers, and the macro-invertebrates were mainly oligochaetes. Dissolved oxygen was higher for organic fertilizer (6.16 ± 0.98 mg/l) than for inorganic (5.92 ± 1.19 mg/l) while the other water quality parameters did not present significant differences. Survival was similar in the two fertilization regimes (96.6%). Final body weight was 11.89 ± 1.73 g for the inorganic fertilizers and 12.28 ± 1.71 g for organic fertilizer. It is concluded that wheat bran showed good performance in the water quality without exchange, in the availability of natural food, and in the growth and survival of the shrimps in the microcosms.
Показать больше [+] Меньше [-]Rice-shrimp ecosystems in the Mekong Delta: Linking water quality, shrimp and their natural food sources Полный текст
2020
Leigh, Catherine | Stewart-Koster, Ben | Sang, Nguyen Van | Truc, Le Van | Hiep, Le Huu | Xoan, Vo Bich | Tinh, Nguyen Thi Ngoc | An, La Thuy | Sammut, Jesmond | Burford, Michele A.
Aquatic ecosystems are used for extensive rice-shrimp culture where the available water alternates seasonally between fresh and saline. Poor water quality has been implicated as a risk factor for shrimp survival; however, links between shrimp, water quality and their main food source, the natural aquatic biota inhabiting these ponds, are less well understood. We examined the aquatic biota and water quality of three ponds over an entire year in the Mekong Delta, Vietnam, where the growing season for the marine shrimp Penaeus monodon has been extended into the wet season, when waters freshen. The survival (30–41%) and total areal biomass (350–531 kg ha⁻¹) of shrimp was constrained by poor water quality, with water temperatures, salinity and dissolved oxygen concentrations falling outside known optimal ranges for several weeks. Declines in dissolved oxygen concentration were matched by declines in both shrimp growth rates and lipid content, the latter being indicative of nutritional condition. Furthermore, as the dry season transitioned into the wet, shifts in the taxonomic composition of phytoplankton and zooplankton were accompanied by declines in the biomass of benthic algae, an important basal food source in these systems. Densities of the benthic invertebrates directly consumed by shrimp also varied substantially throughout the year. Overall, our findings suggest that the survival, condition and growth of shrimp in extensive rice-shrimp ecosystems will be constrained when poor water quality and alternating high and low salinity negatively affect the physiology, growth and composition of the natural aquatic biota. Changes in management practices, such as restricting shrimp inhabiting ponds to the dry season, may help to address these issues and improve the sustainable productivity and overall condition of these important aquatic ecosystems.
Показать больше [+] Меньше [-]