Уточнить поиск
Результаты 1-2 из 2
The role of water in transforming food systems Полный текст
2022
Ringler, Claudia | Agbonlahor, Mure Uhunamure | Barron, Jennie | Baye, Kaleab | Meenakshi, J. V. | Mekonnen, Dawit Kelemework | Uhlenbrook, Stefan
The United Nations Food Systems Summit aimed to chart a path toward transforming food systems toward achieving the Sustainable Development Goals. Despite the essentiality of water for food systems, however, the Summit has not sufficiently considered the role of water for food systems transformation. This focus is even more important due to rapidly worsening climate change and its pervasive impacts on food systems that are mediated through water. To avoid that water “breaks” food systems, key food systems actors should 1) Strengthen efforts to retain water-dependent ecosystems, their functions and services; 2) Improve agricultural water management; 3) Reduce water and food losses beyond the farmgate; 4) Coordinate water with nutrition and health interventions; 5) Increase the environmental sustainability of food systems; 6) Explicitly address social inequities; and 7) Improve data quality and monitoring for water-food system linkages.
Показать больше [+] Меньше [-]Stabilizing effects of seagrass meadows on coastal water benthic food webs Полный текст
2019
Jankowska, Emilia | Michel, Loïc N. | Lepoint, Gilles | Włodarska-Kowalczuk, Maria
Seagrass meadows ecosystem engineering effects are correlated to their density (which is in turn linked to seasonal cycles) and often cannot be perceived below a given threshold level of engineer density. The density and biomass of seagrass meadows (Z. marina) together with associated macrophytes undergo substantial seasonal changes, with clear declines in winter. The present study aims to test whether the seasonal changes in the density of recovering seagrass meadows affect the benthic food webs of the southern Baltic Sea (Puck Bay). It includes meiofauna, macrofauna and fish of vegetated and unvegetated habitats in summer and winter seasons. Two levels of organization have been tested – species-specific diet preferences using stable isotopes (δ13C, δ15N) in Bayesian mixing models (MixSIAR) and the community-scale food web characteristics by means of isotopic niches (SIBER). Between-habitat differences were observed for grazers, as a greater food source diversity in species from vegetated habitats was noted in both seasons. Larger between-habitat differences in winter were documented for suspension/detritus feeders. The community-wide approach showed that the differences between the habitats were greater in winter than in summer (as indicated by the lower overlap of the respective isotope niches). Overall, the presence of seagrass meadows increased ecological stability (in terms of the range of food sources utilized by consumers) in the faunal assemblage, while invertebrates from unvegetated areas shifted their diet to cope with winter conditions. Therefore, as a more complex system, not sensitive to seasonal changes, Z. marina meadows create a stable habitat with high resilience potential.
Показать больше [+] Меньше [-]