Уточнить поиск
Результаты 1-10 из 13
Handbook of water and energy management in food processing
2008
Klemeš, Jiří Jaromír | Smith, Robin | Kim, Jin-Kuk
Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus Полный текст
2020
Kamrani, Kazem | Roozbahani, Abbas | Hashemy Shahdany, Seied Mehdy
This study proposes a performance appraisal framework for agricultural water distribution systems based on the Water-Food-Energy Nexus perspective. To analyze and evaluate agricultural water distribution systems with this framework, various methods of improving the operational management were developed and tested under the conventional and water shortages in operational scenarios. The Water-Food-Energy Nexus indicators were then calculated for performance appraisal of the water distribution systems in a study area, located in central Iran. The results indicated that by upgrading the manual operation to an automatic control system, gave the best results from the nexus indicators perspectives. The Bayesian Network model was used to present a probabilistic approach that could assist managers and decision-makers in evaluating the performance of the system, based on the nexus perspective. For this purpose, various configurations of the Bayesian Network structures were developed based on an export-oriented approach, and the most appropriate model was determined for the test case. The calibration and validation process of the selected configuration approved a high accuracy in fulfilling the objective of the study. The developed framework can be employed as a decision support model to prioritize options for modernizing agricultural water distribution systems.
Показать больше [+] Меньше [-]Footprints of water and energy inputs in food production -- Global perspectives Полный текст
2009
K̲h̲ān, Shahbāz | Hanjra, Munir A.
During the second half of the 20th century the global food production more than doubled and thus responded to the doubling of world population. But the gains in food production came at a cost, leaving a significant environmental footprint on the ecosystem. Global cropland, plantations and pastures expanded, with large increases in fossil energy, water, and fertilizer inputs, imprinting considerable footprint on the environment. Information from pre eminent publications such as Nature, Science, PNAS and scholarly journals is synthesized to assess the water and energy footprints of global food production. The data show that the footprints are significant, both locally, national and globally and have consequences for global food security and ecosystem health and productivity. The literature nearly agrees that global food production system generates considerable environmental footprints and the situation would likely get worrisome, as global population grows by 50% by 2050. Investments are needed today to buffer the negative impacts of food production on the environment. Investments to boost water productivity and improve energy use efficiency in crop production are two pathways to reduce the environmental footprint.
Показать больше [+] Меньше [-]Effectiveness of electrolyzed oxidizing water on fungi and mycotoxins in food Полный текст
2022
Villarreal-Barajas, Tania | Vázquez-Durán, Alma | Méndez-Albores, Abraham
Electrolyzed oxidizing water (EOW) can be considered in the agrofood industry as a new antimicrobial agent with disinfectant, detoxifying, and shelf-life improvement properties. EOW is produced by electrolysis of water, with no added chemicals, except for sodium chloride. The antifungal and detoxifying mechanisms of EOW depend mainly on: pH, oxidation-reduction potential (ORP), and available chlorine concentration (ACC). EOW offers many advantages over other conventional chemical methods, including less adverse chemical residues, safe-handling, secure, energy-saving, cost-effective, and environmentally-friendly. As a result, EOW could be used for the development of safer and more socially acceptable methods for fungi decontamination and mycotoxin detoxification. This review contains an overview of EOW effectiveness to decontaminate non-toxigenic and mycotoxigenic fungi, its safety and efficacy for mycotoxin detoxification, the proposed mechanism of action of EOW on fungal cells, and the chemical mechanism of action of EOW on mycotoxins. Finally, conclusions and future research necessities are also outlined.
Показать больше [+] Меньше [-][Energy saving by means of an adequate water treatment in food industry boilers]
1992
Belio Aragon, F. | Casanova Cirac, O.
Is torpor a water conservation strategy? Heterothermic responses to acute water and food deprivation are repeatable among individuals of Phodopus sungorus Полный текст
2022
Noakes, Matthew J. | Przybylska-Piech, Anna S. | Wojciechowski, Michał S. | Jefimow, Małgorzata
Energy conservation is a clear function of torpor. Although many studies imply that torpor is also a water-saving strategy, the experimental evidence linking water availability with torpor is inconclusive. We tested the relative roles of water and energy shortages in driving torpor, using the Siberian hamster Phodopus sungorus as a model species. To account for the seasonal development of spontaneous heterothermy, we used male hamsters acclimated to short (8L:16D, SP; n = 40) and long (16L:8D, LP; n = 36) photoperiods. We continuously measured body temperature (Tb) during consecutive 32 h of complete removal of water, food, or both, separated by 7.5 d recovery periods. We predicted that all deprivation types would increase the frequency of spontaneous torpor in SP, and induce torpor in LP-acclimated hamsters. Individuals underwent each deprivation type twice in random orders. Food and water deprivation did not induce torpor in LP-acclimated P. sungorus. Patterns of torpor expression varied among deprivation types in SP individuals. Torpor frequency was significantly lower, but bouts were ∼2 h longer and 2.5 °C deeper, during water deprivation compared to food and food-and-water deprivation. Heterothermic responses to all deprivation types were repeatable among individuals. Different torpor patterns during water and food deprivation suggest that water and energy shortages are distinct physiological challenges. Deeper and longer bouts during water deprivation likely led to higher energy and water savings, while shorter and shallower bouts during fasting may reflect a trade-off between energy conservation and food-seeking activity. The lack of a difference between food- and food-and-water-deprived hamsters suggests a higher sensitivity to food than water shortage. This supports the traditional view that energy conservation is the major function of torpor, but suggests that water shortages may also modulate torpor use. The high repeatability of thermoregulatory responses to resource deprivation suggests that these may be heritable traits subject to natural selection.
Показать больше [+] Меньше [-]The security of water, food, energy and liveability of cities: challenges and opportunities for peri-urban futures
2014
Maheshwari, B. | Purohit, R. | Malano, H. | Singh, V. P. | Amerasinghe, Priyanie
The security of water, food, energy and liveability of cities: challenges and opportunities for peri-urban futures
2014
Maheshwari, B. | Purohit, R. | Malano, H.M.M. | Singh, Virendra Pal | Amerasinghe, Priyanie H.
A Water-Energy-Food Nexus approach for conducting trade-off analysis: Morocco's phosphate industry in the Khouribga region Полный текст
2020
Lee, Sanghyun | Assi, Amjad T. | Daher, Bassel T. | Mengoub, Fatima Ezzahra | Mohtar, Rabi H. | Department of Agriculture | Faculty of Agricultural and Food Sciences (FAFS) | American University of Beirut
The study objective was to develop and use the Water-Energy-Food Nexus Phosphate (WEF-P) Tool to evaluate the impact of Morocco's phosphate industry on water, energy, and food sectors of Khouribga, which is the representative phosphate mining region of Morocco. The developed WEF-P Tool enabled a trade-off analysis based on integrating supply-chain processes, transportation, and water- energy footprints of the region. Field data from the mining to transportation processes were collected and applied to possible supply-chain scenarios in accordance with the type of product (phosphate rock and slurry). The potential impacts of the scenarios were considered in terms of the water supply in the agricultural areas. The analysis of the positive impacts of dynamic management suggests that seasonal management of phosphate production (less during the irrigated season, more during wetter or rainier seasons) is more effective. Additionally, while the transport of raw phosphate slurry through a pipeline increased the total water required to 34:6-106 m3, which is an increase of 76% over the business as usual (BAU) scenario, it also resulted in an energy savings of nearly 80% over BAU: slurry transport requires only 40:5-106 L of fossil fuel instead of the 204-106 L required to transport rocks. During the dry or water-scarce irrigation season (May to July), total groundwater use decreased from 5:8-106 to 5:2-106 m3. Dynamic management of the phosphate industry can also save 143MWh (megawatt-hour) of electricity annually and can bring a reduction of 117 t of CO2 emissions. Making water available at the correct season and location requires analysis of complex scientific, technical, socioeconomic, regulatory, and political issues. The WEF-P Tool can assist by assessing user-created scenarios; thus, it is an effective management-decision aid for ensuring more sustainable use of limited resources and increased reliability of water resources for both agricultural and industrial use. This study on the applications of WEF Nexus to the phosphate industry offers a roadmap for other industrial application for which trade-offs between the primary resources must be considered. © 2020 Copernicus GmbH. All rights reserved.
Показать больше [+] Меньше [-]