Уточнить поиск
Результаты 1-3 из 3
Sustainability indexes in water–food–energy nexus to develop strategies with respect to virtual water Полный текст
2023
Shan Huang | Fusheng Zeng
The management of water resources requires a correct understanding of the simultaneous management of food and energy resources. The framework of water–food–energy correlation with the approach of sustainability of resources and uses analyzes the combined management and exploitation of water, food, and energy resources with the help of scenario planning. In addition to sustainability concepts, environmental costs such as the emission of carbon dioxide from fossil fuels and its impact on the environment are also discussed. In this research, according to the five defined indicators and based on the potential of using solar energy and the possibility of exploiting renewable energy sources such as solar energy, various management scenarios have been developed. After examining the virtual water management model developed in the Hunan basin as a case study, the development of the water–food–energy nexus model and its calibration, and four scenarios including improving water use efficiency, energy saving, increasing food productivity, and nexus sustainability were developed. The results showed that the nexus strategy can provide sustainability goals according to the weight of each component. After the combined scenario, improving the efficiency of water consumption can be the component with the highest priority in the decision-making model in dry areas. HIGHLIGHTS The water–food–energy nexus is evaluated as a conceptual approach for achieving sustainable management.; Improving water use efficiency, energy saving, increasing food productivity, and nexus sustainability were considered.; The developed approach provides a significant contribution to achieving regional sustainable development goals.;
Показать больше [+] Меньше [-]Food processing industry energy and water consumption in the Pacific northwest Полный текст
2018
Compton, Marc | Willis, Sarah | Rezaie, Behnaz | Humes, Karen
The food processing industry is one of the largest consumers of energy and water in the manufacturing sector. It is vital that conservation measures are taken to reduce the use of electricity, fuel, and water for producers to have long-term, sustainable growth. The Pacific Northwest (PNW) region includes some the largest food processers in the United States, particularly with products such as fruit and vegetable preserves, apples products, potato products, and milk. Energy and water consumption in PNW food processing facilities are quantified as well as techniques to increase efficiency and reduce waste. Mechanical drive systems and refrigeration consumes the most electricity in the industry and the implementation of energy management plans has the largest potential to save electricity in PNW facilities. Heating and cooling process needs are the largest consumers of energy in the food processing industry. Implementing cogeneration/trigeneration technology, replacing of older equipment, capturing waste heat, and reusing wastewater can have significant impacts on both energy and water consumption. Novel, emerging technologies such as membrane separation, high-pressure processing, microwave assist, ultrasound, pulsed high electric fields, ozone, and hydrogen/electricity generation have significant potential to benefit the food processing industry by increasing efficiency and allowing companies to stay competitive in an industry where sustainable practices are becoming increasingly important to the public.
Показать больше [+] Меньше [-]Impact of the New Energy Context on the Feasibility of Solar Water Heating Systems in the Agri-Food Industry Полный текст
2023
Perdigones, A. | Baptista, F.J. | Garcia, J.L. | Benavente, R. M. | Mazarrón, F.R.
The new energy context since 2021 has led to dramatic increases in the energy bills of agribusinesses, affecting the price of foodstuffs. A considerable part of energy consumption is due to the heating of water at high temperatures. The present study analyzed the feasibility of using a Solar Water Heating System (SWHS) with an evacuated tube collector. In particular, the required sizing changes, potential savings and cost-effectiveness were analyzed. The results show that the new energy context makes the SWHS investment highly attractive: a payback of less than 4 years in most of the scenarios analyzed; energy savings of more than 60% in the scenarios with higher irradiation; a reduction in total energy expenditure of more than 50% in the favorable scenarios close to the current reality. The new context especially favors cold and temperate climates, with very sharp drops in payback compared to the previous situation. To achieve these values, it is necessary to design an optimized sizing of the SWHS, reducing the risk of future variations in the price of energy. The results of the study should serve as a reference for decision making in the agroindustrial sector to reduce the energy bill and strategic dependence on fossil fuels from third countries.
Показать больше [+] Меньше [-]