Уточнить поиск
Результаты 1-3 из 3
Antioxidant and pro-oxidant in vitro evaluation of water-soluble food-related botanical extracts Полный текст
2011
Damien Dorman, H.J. | Hiltunen, Raimo
The total phenol content, antioxidant and pro-oxidant activities of deodourised, water-soluble aniseed, basil, caraway, cardamon, fennel, ginger, juniper, laurel and parsley extracts were estimated using a number of in vitro assays. The laurel and basil extracts contained the highest phenol content of 107.3±1.3 GAE [mg gallic acid equivalents/g (dry wt.) extract] and 98.5±1.4 GAE, respectively, whilst the ginger extract contained the lowest content at 14.9±0.9 GAE. Juniper, laurel and basil extracts were consistently better than the other extracts in terms of iron(III) reducing activity, inhibition of β-carotene-linoleate thermal co-oxidation and N,N-dimethyl-p-phenylenediamine and hydroxyl radical scavenging assays. Potential pro-oxidant activities of the extracts were assessed using both DNA and bovine serum albumin (BSA) as substrates. None of the extracts were capable of stimulating hydroxyl-mediated DNA fragmentation; however, the extracts could be categorised in the protein oxidation assay as extracts with (i) no significant (p>0.05) effect, (ii) a significant (p<0.05) protective effect or (iii) a significant (p<0.05) pro-oxidant effect. The extracts from juniper, laurel and basil had a pro-oxidative effect upon BSA at a dose of 2mg/ml, as estimated from the degree of carbonylation measured.
Показать больше [+] Меньше [-]Food-grade silica-loaded gallic acid nanocomposites: Synthesis and mechanism for enhancing water-based biological activity Полный текст
2024
Huizhen Feng | Long Jiao | Xiaoye Zhang | Soottawat Benjakul | Bin Zhang
As the low water solubility of gallic acid (GA), its biological activities such as water-based antioxidant effect may be greatly reduced. Therefore, GA-loaded nanocomposites (F-SiO2@GA) with high water solubility were synthesized via solvent evaporation using food-grade silica (F-SiO2) as carriers in this work. The assessment of antioxidant capacity revealed that F-SiO2@GA exhibited considerably greater free-radical scavenging ability than free GA and the physical mixture of F-SiO2 and GA. In the photooxidation experiment of food-grade gardenia yellow pigment (GYP), F-SiO2@GA showed a notable antioxidant effect on GYP solution. Additionally, in the storage experiment on chilled whiteleg shrimp (Litopenaeus vannamei) treated with F-SiO2@GA, pH, total volatile basic nitrogen (TVBN), and thiobarbituric acid reactive substance (TBARS) values were effectively inhibited. In conclusion, the internal encapsulation of GA effectively prevented the self-aggregation phenomenon, thereby facilitating the exposure of its active phenolic hydroxyl group and significantly enhancing its water-based biological activity.
Показать больше [+] Меньше [-]Influence of ethanol/water ratio in ultrasound and high‐pressure/high‐temperature phenolic compound extraction from agri‐food waste Полный текст
2016
Paini, Marco | Casazza, Alessandro A. | Aliakbarian, Bahar | Perego, Patrizia | Binello, Arianna | Cravotto, Giancarlo
The valorisation and management of agri‐food waste are currently hot investigation topics which probe the recovery of valuable compounds, such as polyphenols. In this study, high‐pressure/high‐temperature extraction (HPTE) and ultrasound‐assisted extraction (UAE) have been used to study the recovery of phenolic compounds from grape marc and olive pomace in hydroalcoholic solutions. The main phenolic compounds in both extracts were identified by HPLC‐DAD. Besides extraction yield (total polyphenol and flavonoid content) and the antiradical power, polyphenol degradation under HPTE and UAE has also been studied. HPTE with ethanol 75% gave higher phenolic extraction yields: 73.8 ± 1.4 mg of gallic acid equivalents per gram of dried matter and 60.0 mg of caffeic acid equivalents per gram of dried matter for grape marc and olive pomace, respectively. In this study, the efficient combination of ethanol/water mixture with HPTE or UAE has been used to enhance the recovery of phenolic compounds from grape marc and olive pomace. HPLC‐DAD showed that UAE prevents phenolic species degradation damage because of its milder operative conditions.
Показать больше [+] Меньше [-]