Уточнить поиск
Результаты 1-10 из 30
Cereal protein-based nanoparticles as agents stabilizing air–water and oil–water interfaces in food systems Полный текст
2019
Wouters, Arno GB | Delcour, Jan A.
There has been a recent surge of interest in the use of food-grade nanoparticles (NPs) for stabilizing food foams and emulsions. Cereal proteins are a promising raw material class to produce such NPs. Studies thus far have focused mostly on wheat gliadin and maize zein-based NPs. The former are effective interfacial stabilizing agents, while the latter due to their high hydrophobicity generally result in poor interfacial stability. Several strategies to modify the surface properties of wheat gliadin and maize zein NPs have been followed. In many instances, this resulted in improved foam or emulsion stability. Nonetheless, future efforts should be undertaken to gain fundamental insights in the interfacial behavior of NPs, to further explore NP surface modification strategies, and to validate the use of NPs in actual food systems.
Показать больше [+] Меньше [-]Improved water resistance inedible zein films and composites for biodegradable food packaging
1995
Yamada, K. | Takahashi, H. | Noguchi, A.
Zein, corn prolamine, was dissolved in several organic solvents to make films and their properties were examined. Ethanol with 20% water and acetone with 30% water were found to dissolve zein well and transform it into a transparent flexible film after moderate drying. Both films showed similar breaking strength to that of commercial thin film of polyvinylidene chloride for food use and were digested with proteases. Only the film prepared from acetone solution showed a relatively low water permeability. This water permeation was found to depend strongly on the rate of diffusion. 1,2-Epoxy-3-chloropropane (ECP) was added into the acetone solution to cross-link the zein molecules for the purpose of improving the breaking strength and water-resistant properties of the film. Alpha-chymotrypsin was found to digest the film even after the modification with ECP. However, this cross-linking resulted in little improvement in the water-resistant properties of the film and also reduced its flexibility.
Показать больше [+] Меньше [-]Removal of Shewanella putrefaciens Biofilm by acidic electrolyzed water on food contact surfaces Полный текст
2021
Yan, Jun | Xie, Jing
Shewanella putrefaciens is an important specific spoilage organism (SSO) in seafood under low-temperature storage and can form biofilms on seafood processing-related contact surfaces, which exacerbates seafood spoilage and causes food safety problems. The characterization of and dynamic change in biofilms formed by Shewanella putrefaciens on three seafood processing-related contact surfaces were investigated in this study. An effective strategy to eliminate mature biofilms by acidic electrolysis water (AEW) was provided. Shewanella putrefaciens can form biofilms on glass, stainless steel and polystyrene, which are closely connected with surface properties such as hydrophilicity/hydrophobicity and surface roughness. AEW can be an excellent choice to clean mature biofilms formed by S. putrefaciens. AEW at a concentration of 3 g/L can remove almost all biofilms on the three common food contact materials tested. There is a bactericidal effect on the biofilm, reducing the possibility of secondary contamination. This study will contribute to promoting the application of AEW for controlling biofilms during seafood processing.
Показать больше [+] Меньше [-]Reduction of Water Vapor Permeability in Food Multilayer Biopackaging by Epitaxial Crystallization of Beeswax Полный текст
2021
Cruces, Florencia | García, María Guadalupe | Ochoa, Nelio Ariel
In this paper, multilayer pectin-beeswax/colophony-pectin (P-BC-P) films including different proportions of beeswax/colophony mixtures were prepared in order to reduce the water vapor permeability. FTIR, XRD, DSC, polarized light microscopy (PLM), and water vapor permeation assays were performed. Characterization techniques showed (i) polar interactions between beeswax and colophony at the amorphous phase, (ii) changes in beeswax crystalline phase from sponge-like to needle-like structure, and (iii) formation of a eutectic mixture at BC3 70/30 ratio which guides the epitaxial crystallization of beeswax. Pure pectin films showed low resistance to the water vapor permeation (361 × 10⁻¹³ g m m⁻² s⁻¹ Pa⁻¹), while multilayer films showed major control over the transport process. P-BC3-P showed one of the lowest water vapor permeability (WVP) values (56 × 10⁻¹³ g m m⁻² s⁻¹ Pa⁻¹) and the closest WVP value to that of polyethylene films (LDPE 5.8 × 10⁻¹³ g m m⁻² s⁻¹ Pa⁻¹). This result was attributed to the ordered crystalline structure reached by the epitaxial crystallization of beeswax within the hydrophobic phase.
Показать больше [+] Меньше [-]Development of a fully water-dilutable mint concentrate based on a food-approved microemulsion Полный текст
2022
Benkert, Claudia | Freyburger, Auriane | Huber, Verena | Touraud, Didier | Kunz, Werner
Mentha spicata L. disappears in winter. The lack of fresh mint during the cold season can be a limiting factor for the preparation of mint tea. A fresh taste source that can be kept during winter is mint essential oil. As the oil is not soluble in water, a food-approved, water-soluble essential oil microemulsion was studied, investigating different surfactants, in particular Tween® 60. The challenge was to dissolve an extremely hydrophobic essential oil in a homogeneous, stable, transparent, and spontaneously forming solution of exclusively edible additives without adulterating the original fresh taste of the mint. Making use of the microemulsions’ water and oil pseudo-phases, hydrophilic sweeteners and hydrophobic dyes could be incorporated to imitate mint leaf infusions aromatically and visually. The resulting formulation was a concentrate, consisting of ∼ 90% green components, which could be diluted with water or tea to obtain a beverage with a pleasant minty taste.
Показать больше [+] Меньше [-]Efficiencies of polychlorinated bipenyl assimilation from water and algal food by the blue mussel (Mytilus edulis) Полный текст
1999
Bjork, M. | Gilek, M.
A novel method was used to estimate assimilation efficiencies (AEs) of dissolved and food associated PCBs (IUPAC 31, 49, and 153) by the Baltic Sea blue mussel (Mytilus edulis). Mussels were exposed to radiolabeled PCBs in a series of short-term toxicokinetic experiments at different algal food concentrations, both at apparent steady-state (ASS) and non-steady-state (NSS) conditions in respect to PCB partitioning between water and algae. The PCB AEs were calculated using a physiologically based bioaccumulation model where experimentally determined uptake and exposure rates at ASS and NSS conditions were combined into linear equation systems, which were solved for PCB AE from water and food. A positive relationship between PCB uptake and algae clearance by the mussels was observed for all three PCBs. The PCB AEs from both water and food increased with congener hydrophobicity (octanol/water partition coefficient [K(ow)]), but AEs decreased with increases in water pumping and filtration rate of the mussels, respectively, The average contribution of food-associated PCB to the total uptake also increased with K(ow) from approximately 30% for PCB 31 and PCB 49 to 50% for PCB 153, mainly as a consequence of increased sorption to the algal food.
Показать больше [+] Меньше [-]Water-dispersible pH/thermo dual-responsive microporous polymeric microspheres as adsorbent for dispersive solid-phase extraction of fluoroquinolones from environmental water samples and food samples Полный текст
2019
Multifunctional polymeric microspheres were prepared using hyper-cross-linking chemistry combined with surface-initiated atom transfer radical polymerization. The synthesized microspheres exhibited good water dispersibility, a high surface area, and pH/thermo dual-responsiveness. Fluoroquinolones (FQs), which contains a hydrophilic piperazine ring and hydrophobic fluorine atoms, were used as target analytes to assess the performance of the microspheres as a sorbent for dispersive solid-phase extraction (d-SPE). The d-SPE experimental parameters, including extraction time, amount of microspheres, extraction temperature, and sample solution pH, as well as the desorption conditions, were systematically studied. Coupled with LCMS/MS, an analytical method for analysis of trace-level FQs in water samples was developed and validated. Under optimal conditions, linearity with correlation coefficients (r) of >0.99 was achieved in the concentration range of 0.02–10 μg L−1. The limits of detection and quantification for the selected FQs were 5.0–6.7 and 12–20 ng L−1, respectively. High recovery values (93.1%–97.2%), a high enrichment factor (˜180), and good precision (RSD < 8%, n = 6) were obtained for FQ determination in spiked purified water samples. It was proposed that hydrophilic–hydrophobic transition induced by stretching and shrinking of polymer chains under different pH and temperature conditions offered good control of the surface wettability and altered the extraction behavior. The developed method was validated and was successfully applied to the analysis of FQs in environmental water samples, meat and milk samples. These results demonstrated that the water-dispersible polymeric microspheres have good potential for use in separation and extraction techniques.
Показать больше [+] Меньше [-]Treatment of Kraft paper with citrus wastes for food packaging applications: Water and oxygen barrier properties improvement Полный текст
2017
Kasaai, Mohammad Reza | Moosavi, Amene
Hydrophobic materials extracted from citrus wastes, both peel of mandarin fruits and leaf of mandarin trees were used to treat food-grade Kraft paper. The chemical compounds of the extracts were identified by gas chromatography–mass spectroscopy and infrared spectroscopy, and their antioxidant activities were determined using a free radical scavenger agent (2,2-diphenyl-1-picryl-hydrazyl-hydrate, DPPH). Water vapor permeability, air transmission rate, peroxide value, and microstructure of treated and original papers were also determined. The experimental results showed that: (i) most components of the peel or peel/leaf extracts were terpenes; (ii) free volume existed among cellulose macromolecule chains of the original paper, occupied by a part of extract materials, and another part of the extracts was formed a thin layer on the paper surfaces; and (iii) air and water barrier properties and antioxidant activity of the treated papers were improved, indicating that the extracts were efficient materials for food packaging applications.
Показать больше [+] Меньше [-]Cell-surface properties of the food- and water-borne pathogen Aeromonas hydrophila when stored in buffered saline solutions Полный текст
1995
Ascencio, F. | Ljungh, A. | Wadstrom, T.
Aeromonas hydrophila, a ubiquitous inhabitant of aquatic environments, commonly expresses several cell-surface properties that may contribute to virulence. Since many aquatic microorganisms in hostile environments can withstand starvation conditions for long periods, we examined the effect of storage under nutrient poor conditions on the expression of cell-surface properties of this pathogen. Phenotypes studied were: (1) cell surface hydrophobicity and charge, and (2) the ability to bind connective-tissue proteins and lactoferrin. Our results suggest that the response of A. hydrophila to nutrient-poor conditions is regimen specific. Generally, A. hydrophila cells became more hydrophobic and significantly increased their ability to bind the iron-binding glycoprotein lactoferrin when the bacterium was stored under nutrient-poor conditions; however, under these conditions, the cells seemed to lose their ability to bind connective tissue proteins.
Показать больше [+] Меньше [-]Switchable-hydrophilicity solvent-based liquid-phase microextraction in an on-line system: Cobalt determination in food and water samples Полный текст
2022
Santos, Luana Bastos | Assis, Rosivan dos Santos de | Silva, Uneliton Neves | Lemos, Valfredo Azevedo
An on-line system employing switchable-hydrophilicity solvent-based liquid-phase microextraction (SHS-LPME) is described in this work. The method is based on the preconcentration of the species formed between cobalt and the reagent 1-nitroso-2-naphthol (NN), with subsequent detection by digital image colorimetry. The system's operation begins with the on-line mixture of sample, switchable solvent, and an alkaline agent in a reaction coil. Then the mixture is transported to an extraction chamber. The introduction of a proton donor leads to the passage of the solvent to its hydrophobic form, which allows phase separation. The rich phase is then directed to a glass tube, where detection is performed. Octanoic acid, sodium carbonate, and sulfuric acid were used as the extraction solvent, the alkaline agent, and the proton donor, respectively. Under optimized conditions, the method presented a detection limit of 0.8 μg L⁻¹ and an enrichment factor of 41. The precision obtained was 4.8% (20 μg L⁻¹). The accuracy of the method was tested by the analysis of Tomato Leaves certified reference material (NIST 1573a). The method was applied to the determination of cobalt in food, dietary supplements, and water samples. The method is presented as a green alternative and very accessible to the determination of cobalt in the analyzed samples.
Показать больше [+] Меньше [-]