Уточнить поиск
Результаты 1-3 из 3
Optimization of water replacement during leachate recirculation for two-phase food waste anaerobic digestion system with off-gas diversion Полный текст
2021
Luo, Liwen | Kaur, Guneet | Zhao, Jun | Zhou, Jun | Xu, Suyun | Varjani, Sunita | Wong, Jonathan W.C.
An integrated two-phase AD with acidogenic off-gas diversion from a leach bed reactor to an upflow anaerobic sludge blanket was developed for improving methane production. However, this system had its own technical limitation such as mass transfer efficiency for solid-state treatment. In order to optimize the mass transfer in this two phase AD system, leachate recirculation with various water replacement rates regulating the total solids contents (TS) at 12.5%, 15%, and 17.5% was aim to investigate its effect on methane generation. The solubilization of food waste was increased with decreasing TS content, while the enzymatic hydrolysis showed the opposite trend. A TS contents of 15% presented the best acidogenic performance with the highest hydrogen yield of 30.3 L H₂/kg VSₐddₑd, which subsequently resulted in the highest methane production. The present study provides an easy approach to enhance food waste degradation in acidogenic phase and energy conversion in methanogenic phase simultaneously.
Показать больше [+] Меньше [-]Responses of microbial community and acidogenic intermediates to different water regimes in a hybrid solid anaerobic digestion system treating food waste Полный текст
2014
Xu, Suyun | Selvam, Ammaiyappan | Karthikeyan, Obuli. P. | Wong, Jonathan W.C.
This study investigated the effects of different water regimes in an acidogenic leach bed reactor (LBR) during 16-day batch mode food waste digestion. LBRs were operated under five water replacement ratios (WRRs) (100%, 75%, 50%, 25% and 5% in LBRs R1, R2, R3, R4 and R5, respectively) and methanogenic effluent (ME) addition with two leachate recirculation frequencies (once in 24h and 12h in LBRs R6 and R7, respectively). Results showed that 50–100% WRRs accelerated the hydrolysis and acidogenesis with butyrate as the dominant product (∼35% of COD); whereas 5–25% WRRs promoted propionate production. The ME recirculation enhanced protein decomposition and reduced ethanol production. Lactobacillus dominated in LBRs with water addition (R1–R5), while Clostridium and hetero-fermenting lactic acid bacteria dominated in LBR with ME addition (R7). The highest volatile solid degradation (82.9%) and methane yield (0.29L-CH4/g VS) were obtained with ME addition at 0.7d hydraulic retention time.
Показать больше [+] Меньше [-]Supplementation of KOH to improve salt tolerance of methanogenesis in the two-stage anaerobic digestion of food waste using pre-acclimated anaerobically digested sludge by air-nanobubble water Полный текст
2022
Hou, Tingting | Zhao, Jiamin | Lei, Zhongfang | Shimizu, Kazuya | Zhang, Zhenya
Air-nanobubble water (NBW) was applied to pre-acclimate anaerobically digested sludge that was then used as the inoculum in the two-stage anaerobic digestion (AD) of high saline (20 g NaCl/L) food waste (FW) to optimize NBW application in the AD of high saline FW. K⁺ was simultaneously supplemented during the methanogenic stage to resist the inhibition of salt on methanogens. Results showed that after the second pre-acclimation cycle, the inoculum activity was increased 27% in the Air-NBW supplemented reactor in comparison to the deionized water (DW) supplemented one. In the first-stage AD, H₂ yield was enhanced by 46% in the Air-NBW pre-acclimated sludge reactor compared with the DW pre-acclimated sludge reactor. Besides, supplementation of KOH in the methanogenic stage could enhance methane production by 17–25% in the DW reactors at initial pH 7.5, 8.0, and 9.0 when compared to the control reactor (using NaOH adjusted initial pH to 7.5), respectively.
Показать больше [+] Меньше [-]