Уточнить поиск
Результаты 1-10 из 25
Nitrates and nitrites in food and water
1991
Hill, M. J.
This book makes it possible for those interested in the water or food industry to understand better the causes of the concerns of environmentalists, and for the environmentalists to understand better the problems associated with the control of nitrate exposure with respect to decreased food production and possible wholesale changes in the appearance of the countryside.
Показать больше [+] Меньше [-]Assessment of drinking water contamination in food stalls of Jashore Municipality, Bangladesh Полный текст
2021
Shaibur, Molla Rahman | Hossain, Mohammed Sadid | Khatun, Shirina | Tanzia, F. K Sayema
This study aimed to determine the quality of drinking water supplied in different types of food stalls in Jashore Municipality, Bangladesh. A total of 35 water samples were collected from different tea stalls, street side fast food stalls, normal restaurants and well-furnished restaurants. The water quality was evaluated by determining the distinct physical, chemical and biological parameters. The results revealed that the water used in the food stalls and restaurants for drinking purpose was in desired quality in terms of turbidity, electrical conductivity, pH, total dissolved solids, nitrate (NO₃⁻), sulfate (SO₄²⁻), phosphate (PO₄³⁻), chloride (Cl⁻), sodium (Na) and potassium (K) concentrations. The values were within the permissible limit proposed by the Bangladesh Bureau of Statistics and the World Health Organization. Concentrations of calcium (Ca) and magnesium (Mg) found in several samples were higher than the World Health Organization standard. Iron (Fe) concentrations were higher than the permissible limit of the World Health Organization. Only 46% exceeded the permissible limit of Bangladesh Bureau Statistics. The threatening result was that the samples were contaminated by fecal coliform, indicating that the people of Jashore Municipality may have a greater chance of being affected by pathogenic bacteria. The drinking water provided in the street side fast food stalls was biologically contaminated. The findings demonstrate that the drinking water used in food stalls and restaurants of Jashore Municipality did not meet up the potable drinking water quality standards and therefore was detrimental to public health.
Показать больше [+] Меньше [-]Nutrient removal from polluted stream water by artificial aquatic food web system Полный текст
2009
Jung, Dawoon | Cho, Ahnna | Zo, Young-Gun | Choi, Seung-Ik | An, Tʻae-sŏk
For the removal of nutrients from eutrophic stream water polluted by non-point sources, an artificial aquatic food web (AAFW) system comprising processes of phytoplankton growth and Daphnia magna grazing was developed. The AAFW system was a continuous-flow system constructed with one storage basin of 3 m³ capacity, one phytoplankton tank of 3 m³ capacity, and one zooplankton growth chamber of 1.5 m³ capacity. The system was optimized by setting hydraulic retention time of phytoplankton tank as 3 days and D. magna density as 740-1000 individual l⁻¹. When the system was operated on eutrophic stream water that was delivering 471 g of total nitrogen (TN) and 29 g of total phosphorus (TP) loadings for 45 days, 250 g (53%) of TN and 16 g (54%) of TP were removed from the water during its passage through the phytoplankton tank. In addition, 64 g (14%) of TN and 4 g (13%) of TP were removed from the water by harvesting zooplankton biomass in the zooplankton growth chamber, resulting in significant overall removal rates of TN (69%), nitrate (78%), TP (73%), and dissolved inorganic phosphorus (94%). While the removal efficiency of the AAFW system is comparable to those of other ecotechnologies such as constructed wetlands, its operation is less limited by the availability of space or seasonal shift of temperature. Therefore, it was concluded that AAFW system is a highly efficient, flexible system for reducing nutrient levels in tributary streams and hence nutrient loading to large aquatic systems receiving the stream water.
Показать больше [+] Меньше [-]Livestock Farming at the Expense of Water Resources? The Water–Energy–Food Nexus in Regions with Intensive Livestock Farming Полный текст
2019
Vogeler, Colette S. | Möck, Malte | Bandelow, Nils C. | Schröder, Boris
Policymaking in the water–energy–food nexus is characterized by complex ecological, social, and economic interdependencies. Nexus research assumes these interactions to be overseen in the respective resource governance resulting in sectoral perspectives contributing to unsustainable outcomes. In Germany, the political priority given to the formation of an internationally competitive livestock sector by means of intensification, specialization and regional concentration has exerted sustained pressure on water and soil resources. The expansion of bioenergy plants promoted by the renewable energy act has exacerbated the situation. Despite the persistency of the ecological challenges, German policymakers only reacted when the European Commission referred Germany to the European Court of Justice. Current policy efforts to tackle the ecological problems are now provoking disruptions in the agrarian sector in regions with high nitrate concentrations in water resources. By combining the social-ecological systems framework with hypotheses derived from nexus research, we explore the interactions between food, water and energy systems and aim at understanding the unsustainable outcomes. We argue that the non-consideration of the complex interdependencies between the agricultural, the water and the energy system in policymaking and the divergence of policy goals constitute a major cause of unsustainable governance.
Показать больше [+] Меньше [-]Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture Полный текст
2018
Thirumdas, Rohit | Kothakota, Anjinelyulu | Annapure, Uday | Siliveru, Kaliramesh | Blundell, Renald | Gatt, Ruben | Valdramidis, Vasilis P.
Cold plasma is an emerging non-thermal disinfection and surface modification technology which is chemical free, and eco-friendly. Plasma treatment of water, termed as plasma activated water (PAW), creates an acidic environment which results in changes of the redox potential, conductivity and in the formation of reactive oxygen (ROS) and nitrogen species (RNS). As a result, PAW has different chemical composition than water and can serve as an alternative method for microbial disinfection.This paper reviews the different plasma sources employed for PAW generation, its physico-chemical properties and potential areas of PAW applications. More specifically, the physical and chemical properties of PAW are outlined in relation to the acidity, conductivity, redox potential, and concentration of ROS, RNS in the treated water. All these effects are in microbial nature, so the applications of PAW for microbial disinfection are also summarized in this review. Finally, the role of PAW in improving the agricultural practices, for example, promoting seed germination and plant growth, is also presented.PAW appears to have a synergistic effect on the disinfection of food while it can also promote seedling growth of seeds. The increase in the nitrate and nitrite ions in the PAW could be the main reason for the increase in plant growth. Soaking seeds in PAW not only serves as an anti-bacterial but also enhances the seed germination and plant growth. PAW could potentially be used to increase crop yield and to fight against the drought stress environmental conditions.
Показать больше [+] Меньше [-]Vasopressin and nitric oxide synthesis after three days of water or food deprivation Полный текст
2006
Mornagui, B. | Grissa, A. | Duvareille, M. | Gharib, C. | Kamoun, A. | El-Fazaa, S. | Gharbi, N.
Nitric oxide has been suggested to be involved in the regulation of fluid and nutrient homeostasis. In the present investigation, vasopressin and nitric oxide metabolite (nitrite and nitrate) levels were determined in plasma of male Wistar rats submitted to water or food deprivation for three days. Hematocrit and plasma sodium showed marked increase in dehydrated and starved rats. Potassium levels and plasma volume decreased in both treated groups. Plasma osmolality and vasopressin levels were significantly elevated in water deprived (362.8±7.1 mOsm/kg H<sub>2</sub>O, 17.3±2.7 pg/ml, respectively, p<0.001) rats, but not in food deprived (339.9±5.0, 1.34±0.28) rats, compared to the controls (326.1±4.1, 1.47±0.32). The alterations observed in plasma vasopressin levels were related to plasma osmolality rather than plasma volume. Plasma levels of nitrite and nitrate were markedly increased in both water and food deprived rats (respectively, 2.19±0.29 mg/l and 2.22±0.17 mg/l <i>versus</i>1.33±0.19 mg/l, both p<0.01). There was a significant negative correlation between plasma nitrite and nitrate concentration and plasma volume. These results suggest that both dehydration and starvation increase plasma nitric oxide, probably by activation of nitric oxide synthases. The release of nitric oxide may participate in the regulation of the alteration in blood flow, fluid and nutrient metabolism caused by water deprivation or starvation.
Показать больше [+] Меньше [-]The importance of nitrate uptake through food and drinking water for human health
1987
Greim, H. (Gesellschaft fuer Strahlen- und Umweltforschung, Neuherberg (Germany, F.R.). Inst. fuer Toxikologie) | Kerschbaum, G. | Mayr, U.
Water quality, agriculture and food safety in China: Current situation, trends, interdependencies, and management Полный текст
2015
ZHANG, Xiao-nan | GUO, Qiu-ping | SHEN, Xiao-xue | YU, Sheng-wen | QIU, Guo-yu
Water quality in China is becoming a severe challenge for agriculture and food safety, and it might also impact health of population via agriculture and food. Thus, it is causing widespread concern. Based on extensive literatures review and data mining, current situation of water pollution in China and its effects on food safety were analyzed. The 2nd National Water Resource Survey in China show that the surface water all over the country was under slight pollution and about 60% of groundwater is polluted. Drinking water quality is basically guaranteed in urban area but it is worrisome in rural areas. In addition, China is the largest consumer of fertilizer and pesticide in the world and the amounts of application still show increasing trends. Fertilizers and pesticides are the most important sources of pollution, which affect human health as persistent organic pollutants and environmental endocrine disruptors. Eutrophication of surface water and nitrate pollution of groundwater are serious threats to drinking water safety. Sewage irrigation is becoming a pollution source to China's water and land because of lacking of effective regulations. Although, with the advance in technology and management level, control of nitrogen and phosphorus emissions and reducing water pollution is still a major challenge for China.
Показать больше [+] Меньше [-]Modeling Vadose Zone Processes during Land Application of Food-Processing Waste Water in California's Central Valley Полный текст
2008
Miller, Gretchen R. | Rubin, Yoram | Mayer, K Ulrich | Benito, Pascual H.
Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste–stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L⁻¹ water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock–water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.
Показать больше [+] Меньше [-]Effects of agricultural production on nitrates in food and water with particular reference to isotope studies
1974