Уточнить поиск
Результаты 1-3 из 3
Waste water in the food industry: a review of procedure and practice
1997
Amos, P.W. (Engineering and Mechanisation Department, SAC Auchincruive, Ayr KA6 5HW (United Kingdom))
Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste Полный текст
2013
Lim, Jun Wei | Wang, Jing-Yuan
Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5mL-O2/LR-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to inoculated substrates, and substrates without inoculum, respectively.
Показать больше [+] Меньше [-]Role of juvenile hormone in the hypermetabolic production of water revealed by the O2 consumption and thermovision images of larvae of insects fed a diet of dry food Полный текст
2013
Slama, K., Czech Academy of Sciences, Prague (Czech Republic). Inst. of Entomology | Lukas, J., Crop Research Institute, Prague (Czech Republic)
The young larvae of insects living on dry food produce large amounts of water by the metabolic combustion of dietary lipids. The metabolic production of water needed for larval growth, previously known as hypermetabolic responses to juvenile hormone (JH), is associated with a 10 to 20-fold increase in the rate of O2 consumption (10,000 microL O2/g/h in contrast to the usual rate of 500 microL O2/g/h). Growing and moulting larvae are naturally hypermetabolic due to the endogenous release of JH from the corpora allata. At the last, larval-pupal or larval-adult moult there is no JH and as a consequence the metabolic rate is much lower and the dietary lipid is not metabolized to produce water but stored in the fat body. At this developmental stage, however, a hypermetabolic response can be induced by the exogenous treatment of the last larval instars with a synthetic JH analogue. In D. vulpinus, the JH-treated hypermetabolic larvae survive for several weeks without moulting or pupating. In T. castaneum and G. mellonella, the JH-treated hypermetabolic larvae moult several times but do not pupate. All these larvae consume dry food and the hypermetabolic response to JH is considered to be a secondary feature of a hormone, which is produced by some subordinated endocrine organ. The organ is most probably the controversial prothoracic gland (PG), which is a typical larval endocrine gland that only functions when JH is present. According to our hypothesis, PG activated by JH releases an adipokinetic superhormone, which initiates the conversion of dietary lipid into metabolic water. This type of metabolic combustion of dietary lipid produces large quantities of endothermic energy, which is dissipated by the larvae in the form of heat. Thermovision imaging revealed that the body of hypermetabolic larvae of G. mellonella can be as hot as 43 deg C or more. In contrast, the temperature of "cold" normal last instar larvae did not differ significantly from that of their environment. It is highly likely that thermovision will facilitate the elucidation of the currently poorly understood hormonal mechanisms that initiate the production of metabolic water essential for the survival of insects that live in absolutely dry conditions.
Показать больше [+] Меньше [-]