Уточнить поиск
Результаты 1-10 из 73
Circularity in the Urban Water-Energy-Nutrients-Food nexus Полный текст
2022
Haitsma Mulier, M.C.G. | van de Ven, F.H.M. | Kirshen, P.
Urban agriculture is booming. During case study Water-Energy-Food nexus research at urban farms, investigation indicated two types of ‘food’ to be relevant for urban agriculture. Consequently, the ‘food’-component in the WEF nexus is split, which leads to a Water-Energy-Nutrients-Food (WENF) nexus framework for urban farming. This systematic WENF nexus monitoring, analysis and evaluation framework aims to facilitate acquisition of quality data during case study research at farming sites, in order to fill the quantitative data gap regarding urban agriculture and closed circularity loops. Stocks of various types of water, energy, nutrients and food are differentiated and flows within each described. Subsequently, multi-sectoral flows between the four main resource stocks and their interactions and interdependencies are identified with the aim of formulating options for circularity in urban farming. The analysis shows that urban systems offer many opportunities for the realisation of sustainable agriculture in cities because waste management and farming could mutually reinforce each other. Local reuse of resources found in urban “waste” has the potential to reduce stormwater nuisances, energy needs for water, nutrient and food transport, irrigation, and wastewater pumping while eliminating the need for synthetic soil improvement and unsustainable mineral mining. All in all, reusing resources from urban (waste)waters in urban farming initiatives can reduce the negative impact of food production on the environment.
Показать больше [+] Меньше [-]Circular economy approach to reduce water–energy–food nexus Полный текст
2020
Del Borghi, Adriana | Moreschi, Luca | Gallo, Michela
The increase in world population and the resulting demand for food, water, and energy are exerting increasing pressure on soil, water resources, and ecosystems. Identification of approaches to reduce the related cross-sectoral environmental impacts for the water–energy–food nexus is, therefore, crucial. The purpose of the review was to discuss the circular economy approaches devoted to understand the interdependencies among these three sectors. In particular, the review focuses on the importance of the application of life cycle thinking and life cycle assessment for understanding the interconnections in the nexus along the whole supply chains. Moreover, researches related to water and energy use in the agrifood sector are presented, addressing food waste management alternatives in a circular economy perspective.
Показать больше [+] Меньше [-]Perchlorate as an emerging contaminant in soil, water and food Полный текст
2016
Kumarathilaka, Prasanna | Oze, Christopher | Indraratne, S.P. | Vithanage, Meththika
Perchlorate (ClO4−) is a strong oxidizer and has gained significant attention due to its reactivity, occurrence, and persistence in surface water, groundwater, soil and food. Stable isotope techniques (i.e., (18O/16O and 17O/16O) and 37Cl/35Cl) facilitate the differentiation of naturally occurring perchlorate from anthropogenic perchlorate. At high enough concentrations, perchlorate can inhibit proper function of the thyroid gland. Dietary reference dose (RfD) for perchlorate exposure from both food and water is set at 0.7 μg kg−1 body weight/day which translates to a drinking water level of 24.5 μg L−1. Chromatographic techniques (i.e., ion chromatography and liquid chromatography mass spectrometry) can be successfully used to detect trace level of perchlorate in environmental samples. Perchlorate can be effectively removed by wide variety of remediation techniques such as bio-reduction, chemical reduction, adsorption, membrane filtration, ion exchange and electro-reduction. Bio-reduction is appropriate for large scale treatment plants whereas ion exchange is suitable for removing trace level of perchlorate in aqueous medium. The environmental occurrence of perchlorate, toxicity, analytical techniques, removal technologies are presented.
Показать больше [+] Меньше [-]Agricultural development in Ecuador: A compromise between water and food security? Полный текст
2018
Salmoral, Gloria | Khatun, Kaysara | Llive, Freddy | Lopez, Cristina Madrid
Ecuador is facing several threats to its food and water security, with over a tenth of its population currently undernourished and living in poverty. As a response, its government is incorporating new patterns of land use and developing regional water infrastructure to cope with the related challenges. In this study, we assess to what point these efforts contribute to integrated water and food security in the country. We investigated the period 2004–2013 in the most productive agricultural region - the Guayas river basin district (GRBD) - and analysed the impacts of different scenarios of agricultural change on local water security. Our approach integrates MuSIASEM (Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism) with the hydrological SWAT model. Freshwater allocation is evaluated within all the water cycle from its source (natural systems) to the final users (societal systems). Water security is assessed spatiotemporally in terms of water stress for the population living in poverty. Water productivity is obtained in relation to agricultural production and nutrition. The multi-scale analysis shows that whereas at river basin district level the median annual streamflow has a similar magnitude than rainfall stored in soil, these two parameters differ spatiotemporally at subbasin level. The study finds the greatest challenge in achieving water security is the south-east and central part of the GRBD, due to water scarcity and a larger population living in poverty. However, these areas are also simultaneously, where the greatest crop water productivity is found. We conclude that food production for both domestic consumption and market-oriented exports can be increased while meeting ecosystem water demands in all the GRBD regions except for the east. Our integration of methods provides a better approach to inform integrated land and water management and is relevant for academics, practitioners and policymakers alike.
Показать больше [+] Меньше [-]Improved water and soil management: the key to future food security Полный текст
2014
colin j. chartres
Growing global population and a combination of dietary change, biofuels production, urban and industrial water demand and climate change will see food crises becoming more frequent in the next 40 years. Food and feed production must double to feed 9.1 billion people in 2050. This will require using twice as much water as at present or increasing water productivity. It is argued that we need a Blue-Green revolution to deliver water productivity increases. This revolution will depend on increases of both rainfed and irrigated production and has to include improvements in soil fertility and institutional and governance of agriculture and natural resources | Colin J. Chartres, 'Improved water and soil management: the key to future food security', 2014
Показать больше [+] Меньше [-]New solutions to reduce water and energy consumption in crop production: A water–energy–food nexus perspective Полный текст
2020
Scardigno, Alessandra
Recent research studies and policies about innovative solutions to reduce water and energy consumption in food production are briefly reviewed. Options to increase water use efficiency and productivity include soil mulching, drip irrigation, deficit irrigation, and precision agriculture. As for the energy–water nexus, attention is focused on energy audits of water distribution networks; improving of system performance –– network sectoring, use of variable speed drives, critical points control, electricity tariff — and reduction of wastewater treatment’s energy use. At a larger scale, other solutions emerge: diversification and rotation of crops, cultivation of drought-resistant crops, and optimization process of the spatial distribution of cropping patterns. The rebound effect that can be associated to these options is also considered.
Показать больше [+] Меньше [-]A Water–Energy–Food Nexus Perspective on the Challenge of Eutrophication Полный текст
2018
Reddy, V Ratna | Cunha, Davi Gasparini Fernandes | Kurian, Mathew
This paper attempts to understand and explore the problem of eutrophication in the context of agriculture with the help of a nexus perspective. Eutrophication is significantly linked to water and energy resources with theoretically well-defined trade-offs and threshold levels. While looking at the linkages between water and land resources comprehensively, our paper questions the present approach to designing and implementing watershed management, and analyses the effects of agricultural intensification, especially in dry regions. Eutrophication is the process by which excessive nutrient loads in water bodies lead to undesirable water-quality problems and the degradation of the overall aquatic ecosystem. Due to limited information and knowledge on water and soil quality in most countries, farmers continue to use fertilizers at an increasing rate and agricultural run-off has been carrying ever more nitrogen and phosphorus into water bodies. This is likely to become a vicious cycle of eutrophication affecting food and water security. Of late, soil- and water-conservation interventions, like watershed development, are further reducing run-off. It is argued that there is a need to rethink the assumptions under which watershed interventions are designed and implemented.
Показать больше [+] Меньше [-]Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food Полный текст
2019
Shapiro, Karen | Bahia-Oliveira, Lillian | Dixon, Brent | Dumètre, Aurélien | de Wit, Luz A. | VanWormer, Elizabeth | Villena, Isabelle
Toxoplasma gondii is a zoonotic protozoan parasite that can cause morbidity and mortality in humans, domestic animals, and terrestrial and aquatic wildlife. The environmentally robust oocyst stage of T. gondii is fundamentally critical to the parasite's success, both in terms of its worldwide distribution as well as the extensive range of infected intermediate hosts. Despite the limited definitive host species (domestic and wild felids), infections have been reported on every continent, and in terrestrial as well as aquatic environments. The remarkable resistance of the oocyst wall enables dissemination of T. gondii through watersheds and ecosystems, and long-term persistence in diverse foods such as shellfish and fresh produce. Here, we review the key attributes of oocyst biophysical properties that confer their ability to disseminate and survive in the environment, as well as the epidemiological dynamics of oocyst sources including domestic and wild felids. This manuscript further provides a comprehensive review of the pathways by which T. gondii oocysts can infect animals and people through the environment, including in contaminated foods, water or soil. We conclude by identifying critical control points for reducing risk of exposure to oocysts as well as opportunities for future synergies and new directions for research aimed at reducing the burden of oocyst-borne toxoplasmosis in humans, domestic animals, and wildlife.
Показать больше [+] Меньше [-]Effect of arsenic-contaminated water on food chain in Bangladesh : analysis of arsenic in soil, water and plants /
2015
Delowar, Hossain K. M. | Yoshida, I. | Harada, M. | Uddin, Md. Imtiaz.
Effect of arsenic-contaminated water on food chain in Bangladesh / analysis of arsenic in soil, water and plants
2005
Delowar, Hossain K. M. | Yoshida, I. | Harada, M. | Uddin, Md. Imtiaz