Уточнить поиск
Результаты 1-3 из 3
Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water Полный текст
2008
Guentzel, J.L. | Lam, K.L. | Callan, M.A. | Emmons, S.A. | Dunham, V.L.
Food safety issues and increases in food borne illnesses have promulgated the development of new sanitation methods to eliminate pathogenic organisms on foods and surfaces in food service areas. Electrolyzed oxidizing water (EO water) shows promise as an environmentally friendly broad spectrum microbial decontamination agent. EO water is generated by the passage of a dilute salt solution (approximately 1% NaCl) through an electrochemical cell. This electrolytic process converts chloride ions and water molecules into chlorine oxidants (Cl2, HOCl/ClO-). At a near-neutral pH (pH 6.3-6.5), the predominant chemical species is the highly biocidal hypochlorous acid species (HOCl) with the oxidation reduction potential (ORP) of the solution ranging from 800 to 900 mV. The biocidal activity of near-neutral EO water was evaluated at 25 °C using pure cultures of Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis. Treatment of these organisms, in pure culture, with EO water at concentrations of 20, 50, 100, and 120 ppm total residual chlorine (TRC) and 10 min of contact time resulted in 100% inactivation of all five organisms (reduction of 6.1-6.7 log10 CFU/mL). Spray treatment of surfaces in food service areas with EO water containing 278-310 ppm TRC (pH 6.38) resulted in a 79-100% reduction of microbial growth. Dip (10 min) treatment of spinach at 100 and 120 ppm TRC resulted in a 4.0-5.0 log10 CFU/mL reduction of bacterial counts for all organisms tested. Dipping (10 min) of lettuce at 100 and 120 ppm TRC reduced bacterial counts of E. coli by 0.24-0.25 log10 CFU/mL and reduced all other organisms by 2.43-3.81 log10 CFU/mL.
Показать больше [+] Меньше [-]Valuing the synergy in the water-energy-food nexus for cropping systems: a case in the North China Plain Полный текст
2021
Li, Jinna | Cui, Jixiao | Xu, Yipeng | Yue, Shunnian | Yang, Jia | Lv, Ziqing | Wang, Dong | Chen, Xingqiong | Sun, Beibei | Ran, Mengmeng | Chen, Matthew Y.
Extreme climate change, rapid population growth and economic development drive a growing demand for resources, which lead to energy, food, water and their intertwined nexus becoming increasingly important. Agricultural decisions considering the interconnections among water, energy, and food are critical. The consumption of large amounts groundwater and non-renewable energy by the predominant traditional wheat-maize cropping system has caused a serious water shortage in the North China Plain (NCP), which is a large food production region in China. This situation has strained the relationship between water/energy consumption and food production. It is important to seek synergy in the water-energy-food nexus. This paper proposed a relative index of water-energy-food (WEFRI) based on different values of resource consumption and use efficiency between treatment systems and control system to analyze the synergy between water utilization, energy consumption and food supply in different cropping systems at the field scale. The goal is to seek a sustainable cropping system to balance crop production while reducing energy consumption and water depletion. In this case, different systems including monocropped maize (Zea mays) (MM), intercropped maize and soybean (Glycine max) (MS), relay cropped of maize with pea (Pisum sativum) (MP) and potato (Solanum tuberosum) (MO), rotation of maize with spinach (Spinacia oleracea) (MI) and ryegrass (Secale cereale) (MR), and using traditional wheat-maize (Triticum aestivum) (MW) as a control. MM, MS, MP and MO were the best systems within a particular range of food supply reduction. The WEFRI of the MM/MS system was the highest (2.96/2.78). Compared to the MW system, the groundwater consumption of MM/MS was reduced by 73.84%/73.84%, and non-renewable energy inputs were reduced by 48.01%/48.30%; however, the food supply decreased by 48.05%/51.70%. The WEFRI of the MP system was 1.98. In comparison with the MW system, the groundwater consumption of the MP system was reduced by 28.46%, and the non-renewable energy inputs were reduced by 42.68%. However, the food supply decreased by 37.13%. The WEFRI of MO system was 1.92. Compared to the MW system, the groundwater consumption of MO was reduced by 11.47%, non-renewable energy inputs were reduced by 32.14%, and the food supply only decreased by 26.27%. In conclusion, we theoretically proposed the following references for cropping systems in the NCP: MM and MS are implemented when the areas has extreme water shortages, MO is implemented when a less than 30% reduction in the food supply capacity is acceptable, and MP is recommended if a 30%–40% reduction in the food supply is acceptable.
Показать больше [+] Меньше [-]Spray irrigation with microcystins-rich water affects plant performance from the microscopic to the functional level and food safety of spinach (Spinacia oleracea L.) Полный текст
2021
Tsoumalakou, E. | Papadimitriou, T. | Berillis, P. | Kormas, K.A. | Levizou, E.
Irrigation water coming from freshwater bodies that suffer toxic cyanobacterial blooms causes adverse effects on crop productivity and quality and raises concerns regarding food contamination and human exposure to toxins. The common agricultural practice of spray irrigation is an important exposure route to cyanotoxins, yet its impact on crops has received little attention. In the present study we attempted an integrated approach at the macro- and microscopic level to investigate whether spray or drip irrigation with microcystins (MCs)-rich water differently affect spinach performance. Growth and functional features, structural characteristics of stomata, and toxin bioaccumulation were determined. Additionally, the impact of irrigation method and water type on the abundance of leaf-attached microorganisms was assessed. Drip irrigation with MCs-rich water had detrimental effects on growth and photosynthetic characteristics of spinach, while spray irrigation ameliorated to various extents the observed impairments. The stomatal characteristics were differently affected by the irrigation method. Drip-irrigated spinach leaves showed significantly lower stomatal density in the abaxial epidermis and smaller stomatal size in the adaxial side compared to spray-irrigation treatment. Nevertheless, the latter deteriorated traits related to fresh produce quality and safety for human consumption; both the abundance of leaf-attached microorganisms and the MCs bioaccumulation in edible tissues well exceeded the corresponding values of drip-irrigated spinach with MC-rich water. The results highlight the significance of both the use of MCs-contaminated water in vegetable production and the irrigation method in shaping plant responses as well as health risk due to human and livestock exposure to MCs.
Показать больше [+] Меньше [-]