Уточнить поиск
Результаты 1-10 из 14
Stabilizing effects of seagrass meadows on coastal water benthic food webs Полный текст
2019
Jankowska, Emilia | Michel, Loïc N. | Lepoint, Gilles | Włodarska-Kowalczuk, Maria
Seagrass meadows ecosystem engineering effects are correlated to their density (which is in turn linked to seasonal cycles) and often cannot be perceived below a given threshold level of engineer density. The density and biomass of seagrass meadows (Z. marina) together with associated macrophytes undergo substantial seasonal changes, with clear declines in winter. The present study aims to test whether the seasonal changes in the density of recovering seagrass meadows affect the benthic food webs of the southern Baltic Sea (Puck Bay). It includes meiofauna, macrofauna and fish of vegetated and unvegetated habitats in summer and winter seasons. Two levels of organization have been tested – species-specific diet preferences using stable isotopes (δ13C, δ15N) in Bayesian mixing models (MixSIAR) and the community-scale food web characteristics by means of isotopic niches (SIBER). Between-habitat differences were observed for grazers, as a greater food source diversity in species from vegetated habitats was noted in both seasons. Larger between-habitat differences in winter were documented for suspension/detritus feeders. The community-wide approach showed that the differences between the habitats were greater in winter than in summer (as indicated by the lower overlap of the respective isotope niches). Overall, the presence of seagrass meadows increased ecological stability (in terms of the range of food sources utilized by consumers) in the faunal assemblage, while invertebrates from unvegetated areas shifted their diet to cope with winter conditions. Therefore, as a more complex system, not sensitive to seasonal changes, Z. marina meadows create a stable habitat with high resilience potential.
Показать больше [+] Меньше [-]An integrated model to evaluate water-energy-food nexus at a household scale Полный текст
2017
Hussien, Wa'el A. | Memon, Fayyaz A. | Savic, Dragan A.
To achieve a sustainable supply and effectively manage water, energy and food (WEF) demand, interactions between WEF need to be understood. This study developed an integrated model, capturing the interactions between WEF at end-use level at a household scale. The model is based on a survey of 419 households conducted to investigate WEF over winter and summer for the city of Duhok, Iraq. A bottom-up approach was used to develop this system dynamics-based model. The model estimates WEF demand and the generated organic waste and wastewater quantities. It also investigates the impact of change in user behaviour, diet, income, family size and climate.The simulation results show a good agreement with the historical data. Using the model, the impact of Global Scenario Group (GSG) scenarios was investigated. The results suggest that the ‘fortress world’ scenario (an authoritarian response to the threat of breakdown) had the highest impact on WEF.
Показать больше [+] Меньше [-]Water moss as a food item of the zoobenthos in the Yenisei River Полный текст
2011
Kalachova, Galina | Gladyshev, Michail | Sushchik, Nadezhda | Makhutova, Olesia
Bryophytes are abundant in streams and are a habitat for many invertebrates, but their contribution to the diet of fluvial zoobenthos is still debated. To estimate the amount of bryophyte-derived organic matter assimilated by benthic invertebrates, we used a combination of fatty acid and stable isotope analyses during a four-year monthly study of a littoral site in the Yenisei River (Siberia, Russia). Acetylenic acids, which are highly specific biomarkers of the water moss Fontinalis antipyretica, were found in lipids of all dominant benthic animals: gammarids, ephemeropterans, chironomids and trichopterans. The dominant zoobenthic species, Eulimnogammarus viridis, had maximum levels of the biomarkers in its biomass during winter, and minimum levels in summer. The zoobenthos in the studied site regularly consume and assimilate bryophyte-derived organic matter as a minor supplemental food. This consumption increases in winter, when the main food source of the zoobenthos, epilithic biofilms, are probably scarce.
Показать больше [+] Меньше [-]Development of a fully water-dilutable mint concentrate based on a food-approved microemulsion Полный текст
2022
Benkert, Claudia | Freyburger, Auriane | Huber, Verena | Touraud, Didier | Kunz, Werner
Mentha spicata L. disappears in winter. The lack of fresh mint during the cold season can be a limiting factor for the preparation of mint tea. A fresh taste source that can be kept during winter is mint essential oil. As the oil is not soluble in water, a food-approved, water-soluble essential oil microemulsion was studied, investigating different surfactants, in particular Tween® 60. The challenge was to dissolve an extremely hydrophobic essential oil in a homogeneous, stable, transparent, and spontaneously forming solution of exclusively edible additives without adulterating the original fresh taste of the mint. Making use of the microemulsions’ water and oil pseudo-phases, hydrophilic sweeteners and hydrophobic dyes could be incorporated to imitate mint leaf infusions aromatically and visually. The resulting formulation was a concentrate, consisting of ∼ 90% green components, which could be diluted with water or tea to obtain a beverage with a pleasant minty taste.
Показать больше [+] Меньше [-]Advanced near-zero waste treatment of food processing wastewater with water, carbon, and nutrient recovery Полный текст
2021
Grossman, Amit Dan | Belete, Yonas Zeslase | Boussiba, Sammy | Yogev, Uri | Posten, Clemens | Ortiz Tena, Franziska | Thomsen, Laurenz | Wang, Song | Gross, Amit | Leu, Stefan | Bernstein, Roy
A near-zero waste treatment system for food processing wastewater was developed and studied. The wastewater was treated using an anaerobic membrane bioreactor (AnMBR), polished using an outdoor photobioreactor for microalgae cultivation (three species were studied), and excess sludge was treated using hydrothermal carbonization. The study was conducted under arid climate conditions for one year (four seasons). The AnMBR reduced the total organic carbon by 97%, which was mostly recovered as methane (~57%) and hydrochar (~4%). Microalgal biomass productivity in the AnMBR effluent ranged from 0.25 to 0.8 g·L⁻¹·day⁻¹. Nitrogen (N) and phosphorous (P) uptake varied seasonally, from 18 to 45 mg·L⁻¹·day⁻¹ and up to 5 mg·L⁻¹·day⁻¹, respectively. N and P mass balance analysis demonstrated that the process was highly efficient in the recovery of nitrogen (~77%), and phosphorus (~91%). The performance of the microalgal culture changed among seasons because of climatic variation, as a result of variation in the wastewater chemistry, and possibly due to differences among the microalgal species. Effluent standards for irrigation use were met throughout the year and were achieved within two days in summer and 4.5 days in winter. Overall, the study demonstrated a near-zero waste discharge system capable of producing high-quality effluent, achieving nutrient and carbon recovery into microalgae biomass, and energy production as biogas and hydrochar.
Показать больше [+] Меньше [-]Quantifying water volumes of small lakes in the inner Aral Sea Basin, Central Asia, and their potential for reaching water and food security Полный текст
2016
Conrad, Christopher | Kaiser, Björn Onno | Lamers, John P. A.
In the inner Aral Sea Basin of Central Asia, numerous small lakes scattered over the irrigated landscape supply diverse ecosystem services for humans and nature. This study aimed to estimate the water volumes and assess the potentials of these small lakes for instance as irrigation reserve during the ever-recurring periods of water scarcity in the ecologically endangered Amudarya Delta. Bathymetric measurements gathered in the Khorezm region, Northwest Uzbekistan, permitted developing a statistical relationship between the surface and volume of the lakes. Landsat satellite data enabled for classifying the water bodies and hence deriving lake volumes over the study area. In 2002, the lakes stored ~0.032 km³ water during the winter season, but ~0.057 km³ during the main, 5–6 months spanning irrigation period. The area-wide increase in lake volumes during the irrigation period underlined the magnitude to which the currently practiced, inefficient use of irrigation water, produces excess water that in turn contributes to the existence of the small, mesotrophic lakes. Based on crop water requirements, calculations showed that the reuse of lake water may compensate for water-scarce situations, albeit to a certain extend only. An increased share (13 % above average) of water-intensive rice fields in the vicinity of the lakes substantiated that some lakes are already used in this way. It is argued that, in case of sufficient water quality, as indicated by other studies, more targeted exploration of such lake water can help simultaneously both, increasing food and water security of the households surrounding the lakes and safeguarding a supply to maintain different ecosystem functions. Integrated management of all water resources may reduce excess irrigation water supply to the region, which in turn may lessen the dependency of Central Asian downstream countries on transboundary water and supply water resources for the ecosystems in the river deltas.
Показать больше [+] Меньше [-]Habitat Selection and Winter Food Resources of the Water Pipit Anthus spinoletta in South-Western Poland Полный текст
2006
Orłowski, Grzegorz
In winter 2004/2005, 1532 Water Pipits were recorded during 37 censuses carried out along an established route on a sewage farm flooded with wastewater (Wrocław, SW Poland). Single birds were seen in nearly 39% of all 299 encounters, while the largest concentrations, between 16–28 individuals, accounted for 9%. 78% of all birds were observed on meadows flooded with communal wastewater. The remaining ones stayed around irrigation ditches (n = 172, 11.5%), sedimentation basins (n = 88, 5.9%) and reedbeds (n = 72, 4.8%). The mean size of the Water Pipit concentration was largest on the meadows (mean ± SE = 6.54 ± 0.50 individuals) and smallest at the sedimentation basins (mean = 1.44 ± 0.14). In this winter season (December-first half of March), rainfall enlarged numbers of birds to forage on the meadows, and the thickness of the snow cover was positively correlated with bird abundance at the sedimentation basins. The dominant available prey items inhabiting the warm wastewater were Diptera larvae (96%), 88% of which belonged to the genus Eristalis. The mean (± SD) invertebrate biomass was highest in the basin sediments (1.03 ± 1.14 g/dm³ of deposits), and lowest on the flooded meadows (0.20 ± 0.37 g/dm³ of deposits). The results point to the significance of the artificial environmental conditions created by warm sewage water, which enable the birds to remain largely independent of the weather and thus to overwinter in a cold region of central Europe.
Показать больше [+] Меньше [-]Energy composting allows rapid degradation of food waste using a water bath heated with electricity or solar energy Полный текст
2021
Food waste is a major issue in the context of pollution, climate change, and the future circular economy. Composting kitchen waste is a promising method to recycle elements, yet the efficiency of composting is limited, calling for new processes that degrade rapidly and thoroughly organic matter. Here, we built a rapid laboratory-scale aerobic composting system, equipped with a water bath fueled with either solar energy, or electricity under low sunlight. We tested compositing with and without energy. Results show that only three days are needed to raise the temperature to over 45 °C by energy composting in winter, leading to notable increases in pH, total nitrogen, and cation exchange capacity after 7 days. Composting materials were thoroughly decomposed and mature in 10 days, displaying pH of 7.5, ratio of total organic carbon to total nitrogen of 9.9, cation exchange capacity of 65.61 cmol kg⁻¹, and germination index of 80.4%. Overall, energy composting starts biodegradation quickly in 2 days, reduces effectively the inhibition from some waste compounds, decomposes organic substances well, and yields mature compost.
Показать больше [+] Меньше [-]Will Maize-Based Cropping Systems Reduce Water Consumption without Compromise of Food Security in the North China Plain? Полный текст
2020
Yang, Jia | Cui, Jixiao | Lv, Ziqin | Ran, Mengmeng | Sun, Beibei | Xu, Yipeng | Chen, Matthew Y.
The winter wheat–summer maize double cropping system caused overexploitation of groundwater in the North China Plain; it is unsustainable and threatens food security and the overall wellbeing of humankind in the region. Finding water-saving cropping systems without compromising food security is a more likely solution. In this study, six alternative cropping systems’ water conservation and food supply capacity were compared simultaneously. A combined water footprint method was applied to analyze the cropping systems’ water consumption. The winter wheat–summer maize system had the largest water consumption (16,585 m³/ha on average), followed by the potato/spring maize, spinach–spring maize, rye–spring maize, vetch–spring maize, pea/spring maize, soybean||spring maize and mono-spring maize cropping systems. For the groundwater, the spinach–spring maize, pea/spring maize, soybean||spring maize systems showed a higher degree of synchronization between crop growth period and rainfall, which could reduce use of groundwater by 36.8%, 54.4% and 57.6%, respectively. For food supply capacity, the values for spinach–spring maize, pea/spring maize, soybean||spring maize systems were 73.0%, 60.8% and 48.4% of winter wheat–summer maize, respectively, but they showed a better feeding efficiency than the winter wheat–summer maize system. On the whole, spinach–spring maize may be a good option to prevent further decline in groundwater level and to ensure food security in a sustainable way.
Показать больше [+] Меньше [-]Annual and spatial variability in gains of body weight in Macoma balthica (L.): Relationships with food supply and water temperature Полный текст
2014
Beukema, J.J. | Cadée, G.C. | Dekker, R. | Philippart, C.J.M.
The present paper reports on the results of a long-term field study on the simultaneous influence of 2 environmental factors (temperature and food supply) on annual growth rates in the tellinid bivalve Macoma balthica. For >30y (1978–2009) we monitored twice-annually the weight changes of soft parts of individuals of known age at several permanent sampling stations located at Balgzand, an extensive (50km2) tidal flat area in the western Dutch Wadden Sea. Monthly data were available on mean water temperature and chlorophyll a (chl a) concentration from a nearby site in the main tidal inlet. Mean individual ash-free dry weights at ages of nearly 1 and of nearly 1.5y were assessed in February/March and in August, respectively. Such weights show a consistent annual pattern: they increase between late winter and early summer to decline for the remainder of the year. Annual multi-station means of the spring/summer individual weight gains were higher as chl a concentrations in the water had been higher and water temperatures had been lower for the growing season. These correlations proved to be stronger at sampling sites that were situated low in the intertidal zone close to the main tidal stream than at those high in the intertidal near the coast (where M. balthica obtain their food primarily by deposit feeding on benthic material). At the low off-shore sites, suspended algae are available for longer daily periods and their concentrations in flood water may be less depleted by grazers. The negative correlation between weight gain and water temperature may have been primarily based on the shortening of the M. balthica growing seasons in warm summers. We conclude that the present simultaneous trends of global warming and declining stocks of pelagic algae may affect M. balthica in the Wadden Sea in a similar, negative, way.
Показать больше [+] Меньше [-]