Уточнить поиск
Результаты 41-50 из 272
Food loss in India: water footprint, land footprint and GHG emissions Полный текст
2020
Kashyap, Durba | Agarwal, Tripti
Natural resources are consumed in food production, and food loss is consequently accompanied with a loss of resources as well as greenhouse gas (GHG) emissions. This study analyses food loss based on India-specific production data (for the year 2013) and reported food loss rates during production and post-harvest stages of major food crops and animal products in India. Further, the study evaluates the environmental impacts of food loss in terms of utilization of water, land resources and GHG emissions. The total food loss in harvest and post-harvest stages of the food supply chain for the selected food items amounted to 58.3 ± 2.22 million tonnes (Mt) in the year 2013 with the highest losses by mass in sugarcane and rice. The volume of water associated with the food losses was found to be 115 ± 4.15 billion m³, of which 105 ± 3.77 billion m³ was direct water use (blue + green) and 9.54 ± 0.38 billion m³ was indirect water use (grey). Wasted sugarcane and rice were found to be the largest contributors for water loss. Land footprint and carbon footprint associated with food loss were found to be 9.58 ± 0.4 million hectares (Mha) and 64.1 ± 3.8 Mt CO₂eq, respectively, with rice accounting for the largest impact in both. This highlights the immediate need for quantification and taking measures for minimization of losses across the food supply chains in India.
Показать больше [+] Меньше [-]Interlinkages between human agency, water use efficiency and sustainable food production Полный текст
2020
Lyu, Haoyang | Dong, Zengchuan | Pande, Saket
Efficient use of water and nutrients in crop production are critical for sustainable water and crop production systems. Understanding the role of humans in ensuring water and nutrient use efficiency is therefore an important ingredient of sustainable development. Crop production functions are often defined either as functions of water and nutrient deficiency or are based on economic production theory that conceptualizes production as a result of economic activities that take in inputs such as water, capital and labor and produce crop biomass as output. This paper fills a gap by consistently treating water and nutrient use and human agency in crop production, thus providing a better understanding of the role humans play in crop production. Uptake of water and nutrients are two dominant biophysical processes of crop growth while human agency, including irrigation machine power, land-preparing machine power and human labor force, determine limits of water and nutrient resources that are accessible to crops. Two crops, i.e., winter wheat and rice, which account for the majority of food crop production are considered in a rapidly developing region of the world, Jiangsu Province, China, that is witnessing the phenomenon of rural to urban migration. Its production is modeled in two steps. First water and nutrient efficiencies, defined as the ratios of observed uptake to quantities applied, are modeled as functions of labor and machine power (representing human agency). In the second step, crop yields are modeled as functions of water and nutrient efficiencies multiplied by amounts of water and fertilizers applied. As a result, crop production is predicted by first simulating water and nutrient uptake efficiencies and then determining yield as a function of water and nutrients that are actually taken up by crops. Results show that modeled relationship between water use efficiency and human agency explains 68% of observed variance for wheat and 49% for rice. The modeled relationship between nutrient use efficiency and human agency explains 49% of the variance for wheat and 56% for rice. The modeled relationships between yields and actual uptakes in the second step explain even higher percentages of observed the variance: 73% for wheat and 84% for rice. Leave-one-out cross validation of yield predictions shows that relative errors are on average within 5% of the observed yields, reinforcing the robustness of the estimated relationship and of conceptualizing crop production as a composite function of bio-physical mechanism and human agency. Interpretations based on the model reveal that after 2005, mechanization gradually led to less labor being used relative to machinery to achieve same levels of water use efficiency. Labor and irrigation equipment, on the other hand, were found to be complimentary inputs to water use efficiency. While the results suggest interventions targeting machinery are most instrumental in increasing wheat productivity, they may exasperate rural – urban migration. Policy strategies for alleviating rural-urban migration while ensuring regional food security can nonetheless be devised where appropriate data are available.
Показать больше [+] Меньше [-]What is the role of water in the global food challenge?
2020
Wetser, K. | de Miguel Garcia, A. | Smit, A.A.M.F.R. | Wilbers, G.W. | Wolters, W.
The NASA hydrological forecast system for food and water security applications Полный текст
2020
Arsenault, K. R. | Shukla, S. | Hazra, A. | Getirana, A. | McNally, A. | Kumar, S.V. | Koster, R. D. | Peters-Lidard, C. D. | Zaitchik, B. F. | Badr, H. | Jung, H. C. | Narapusetty, B. | Navari, M. | Wang, S. | Mocko, D. M. | Funk, C. | Harrison, L. | Husak, G. J. | Adoum, A. | Galu, G. | Magadzire, T. | Roningen, J. | Shaw, M. | Eylander, J. | Bergaoui, K. | McDonnell, Rachael A. | Verdin, J. P.
Many regions in Africa and the Middle East are vulnerable to drought and to water and food insecurity, motivating agency efforts such as the U.S. Agency for International Development’s (USAID) Famine Early Warning Systems Network (FEWS NET) to provide early warning of drought events in the region. Each year these warnings guide life-saving assistance that reaches millions of people. A new NASA multimodel, remote sensing–based hydrological forecasting and analysis system, NHyFAS, has been developed to support such efforts by improving the FEWS NET’s current early warning capabilities. NHyFAS derives its skill from two sources: (i) accurate initial conditions, as produced by an offline land modeling system through the application and/or assimilation of various satellite data (precipitation, soil moisture, and terrestrial water storage), and (ii) meteorological forcing data during the forecast period as produced by a state-of-the-art ocean–land–atmosphere forecast system. The land modeling framework used is the Land Information System (LIS), which employs a suite of land surface models, allowing multimodel ensembles and multiple data assimilation strategies to better estimate land surface conditions. An evaluation of NHyFAS shows that its 1–5-month hindcasts successfully capture known historic drought events, and it has improved skill over benchmark-type hindcasts. The system also benefits from strong collaboration with end-user partners in Africa and the Middle East, who provide insights on strategies to formulate and communicate early warning indicators to water and food security communities. The additional lead time provided by this system will increase the speed, accuracy, and efficacy of humanitarian disaster relief, helping to save lives and livelihoods.
Показать больше [+] Меньше [-]New solutions to reduce water and energy consumption in crop production: A water–energy–food nexus perspective Полный текст
2020
Scardigno, Alessandra
Recent research studies and policies about innovative solutions to reduce water and energy consumption in food production are briefly reviewed. Options to increase water use efficiency and productivity include soil mulching, drip irrigation, deficit irrigation, and precision agriculture. As for the energy–water nexus, attention is focused on energy audits of water distribution networks; improving of system performance –– network sectoring, use of variable speed drives, critical points control, electricity tariff — and reduction of wastewater treatment’s energy use. At a larger scale, other solutions emerge: diversification and rotation of crops, cultivation of drought-resistant crops, and optimization process of the spatial distribution of cropping patterns. The rebound effect that can be associated to these options is also considered.
Показать больше [+] Меньше [-]Sustainability of water and energy use for food production based on optimal allocation of agricultural irrigation water Полный текст
2020
Li, Mo | Singh, V. P. (Vijay P.)
Food security is inextricably linked with water and energy use in irrigated agriculture. This article develops an optimization model to evaluate the sustainability of water and energy use for food production, and the coordination among water, energy and carbon footprints. A case study of Heping Irrigation District, China, demonstrates the applicability of the model. We find that 87.47, 86.12, and 83.67 million m³ of irrigation water allocation are sustainable for high, normal, and low flow levels, respectively, considering economic, social and environmental benefits. The structure of surface water and groundwater allocation remains consistent for different subareas.
Показать больше [+] Меньше [-]The water–energy–food–environmental security nexus: moving the debate forward Полный текст
2020
Staupe-Delgado, Reidar
Sustainability scholars increasingly recognise that environmental and security challenges that societies face today cannot be understood in isolation from one another. The rising popularity of a nexus approach to water–energy–food–environmental security analysis reflects this trend. Yet, little is known about exactly how previously disconnected scholarship on water security, energy security, food security and environmental security have converged in this way—and how this convergence can become more holistic and analytically meaningful. This paper outlines major conceptual turns within the literature on these four concepts and reflects on the use of nexus analysis in sustainability science as well as ways forward from where we currently stand. A salient finding is that while a nexus approach suggests more integrated analyses, there is still a tendency for siloed approaches focussed on how, for example, water security connects to energy and food security rather than truly integrated approaches.
Показать больше [+] Меньше [-]Interlinkage between water-energy-food for oil palm cultivation in Thailand Полный текст
2020
Jaroenkietkajorn, Ukrit | Gheewala, Shabbir H.
Biofuels for use in on-road transportation have been promoted in Thailand over the past decade to reduce dependence on imported fossil resources as well as possibly reducing greenhouse gas emissions. This has led to an increase in production of biodiesel which is produced from palm oil. However, as palm oil is also used for food, it is important to take this into consideration as well. Also, oil palm cultivation is rather water-intensive. Hence, it is necessary to analyze the interlinkage between water, food, and energy to have a holistic understanding and prevent trade-offs when addressing one issue in isolation. The water-energy-food nexus for oil palm cultivation in Thailand has been conducted following two widely used methods, the Water-Food-Energy Nexus (WFEN) and Water-Energy-Food (WEF) nexus assessment method. The results are demonstrated as a single score, which is easier for suggesting a suitable area for oil palm plantation. The assessment indicates the southern region of Thailand is the most suitable for oil palm plantation. The recommendation is consistent with the suggestion of the government, based on land and climate suitability. However, this study considers more comprehensive aspects including various other environmental aspects. Oil palm cultivation mainly relates to the amount of freshwater consumption, leading to the increment of fuel consumption for pumping water. On the other hand, the effectiveness of fresh fruit bunch yield (for food and energy production) should be developed in the future. Besides, the results recommend the central region for the expansion of oil palm cultivation in the future because of the availability of a good irrigation infrastructure.
Показать больше [+] Меньше [-]Food System and Water–Energy–Biodiversity Nexus in Nepal: A Review Полный текст
2020
Roshan Subedi | Madhav Karki | Dinesh Panday
Water, energy, and biodiversity are essential components for building a sustainable food system in a developing country like Nepal. Green Revolution technologies and the package of practices largely ignored the role of ecosystem services, leaving a large population of small farmers’ food- and nutrition-insecure. Biodiversity, especially, agrobiodiversity is in decline and this vital cross-cutting element is less discussed and interlinked in nexus literature. The interlinking food system with water–energy–biodiversity nexus, therefore, is essential to achieve a resilient food system. It ensures the vital structures and functions of the ecosystem on which it is dependent are well protected in the face of increasing socio-economic and climatic stress. This paper reviews the food system of Nepal through the lens of the food–water–energy–biodiversity (FWEB) nexus to develop a more robust food system framework. From this approach, food system foresight can benefit from different nature-based solutions such as agro-ecosystem-based adaptation and mitigation and climate-resilient agro-ecological production system. We found that the FWEB nexus-based approach is more relevant in the context of Nepal where food and nutrition insecurity prevails among almost half of the population. Improvement in the food system requires the building of synergy and complementary among the components of FWEB nexus. Hence, we proposed a modified framework of food system foresight for developing resilience in a food system, which can be achieved with an integrated and resilient nexus that gives more emphasis to agro-ecological system-based solutions to make the food system more climate resilient. This framework can be useful in addressing the Sustainable Development Goals (SDGs) numbers 1, 2, 3, 6, 13, and 15 and can also be used as a tool for food system planning based on a broader nexus.
Показать больше [+] Меньше [-]Managing the water-energy-food nexus on an integrated geographical scale Полный текст
2020
Abulibdeh, Ammar | Zaidan, Esmat
The water-energy-food (WEF) nexus is the subject of much research focusing on different aspects, a wide range of issues, and development of a variety of models and tools. This study takes a different approach by developing a holistic framework that concentrates on the spatial elements of continuity and change associated with WEF transition on national, regional, and international scale. The study also investigates the interconnected challenges that could affect these resources and the actions and polices that should be taken on different geographical scales to address these challenges. The results can help practitioners and policy makers gain a clearer understanding of the state of the knowledge when performing WEF nexus assessments at different geographical scales.
Показать больше [+] Меньше [-]