细化搜索
结果 31-40 的 145
Optimisation of vibrational spectroscopy instruments and pre-processing for classification problems across various decision parameters 全文
2024
Joy Sim | Cushla McGoverin | Indrawati Oey | Russell Frew | Biniam Kebede
Vibrational spectroscopy is a green, rapid, and affordable analytical tool for analysing the quality, safety, and origin of biological materials in agri-food sectors. Pre-processing spectral data is crucial to removing instrumental interferences and physical artifacts when developing a classification model. However, there has yet to be a consensus on which spectral pre-processing method, settings, and decision parameters to use to optimise pre-processing for different spectroscopy tools. Using an arbitrary criterion poses a risk of applying the wrong type or too severe pre-processing that removes valuable information or affects the model's performance for prediction studies. Matthew's Correlation Coefficient (MCC) - a statistic for parameterising classification performance, accounts for data set imbalance and improved decisions on model selection to express uncertainty on future predictions. Four vibrational spectroscopy instruments [near-infrared (NIR), hyperspectral (HSI), mid-infrared (FTIR), and Raman] were compared using different pre-processing methods to understand the performance using MCC to classify coffee from four countries (Indonesia, Ethiopia, Brazil and Rwanda). Key decision parameters were evaluated for the development of reliable classification models. The best pre-processing for NIR was extended multiplicative scatter correction with mean centering (MNCN), and for HSI, Savitzky-Golay (1st derivative, 15 points) with MNCN. NIR performed the best across all four instruments, with FTIR performing the worst. Raman showed potential for coffee origin classification using the right pre-processing. Pre-processing with weighted least squares, normalisation, and MNCN eliminated the fluorescence effect on Raman spectral data. These findings show the feasibility of using MCC for classification problems.
显示更多 [+] 显示较少 [-]Compositional characteristics of red clover (Trifolium pratense) seeds and supercritical CO2 extracted seed oil as potential sources of bioactive compounds 全文
2024
Ying Zhou | Ye Tian | Priscilla Ollennu-Chuasam | Maaria Kortesniemi | Katri Selander | Kalervo Väänänen | Baoru Yang
Plant seeds from the Fabaceae (Leguminosae) family are commonly edible. However, little has been done to study the phytochemicals of red clover (Trifolium pratense) seeds. Our study aims to obtain comprehensive and novel findings on red clover seeds and supercritical fluid extraction (SFE)-extracted oil, with the purpose of exploring their potential as a new source of functional ingredients for food and health care products. In our study, red clover seed oil was extracted by supercritical CO2. Forty-four phytochemical compounds were preliminarily identified in red clover seeds and the extracted oil by UPLC-ESI-MS/MS metabolomics method. These compounds mainly belong to lipids, phenolic compounds, terpenoids and phytosterols. Red clover seeds contain fatty acids (4,676.1 mg/100 g dried seeds) and bioactive components such as phenolic compounds (228.4 mg/100 g) and tocopherols (94.9 mg/100 g). In red clover seed oil, unsaturated fatty acids are over 83% and are rich in linoleic acid (54.7 g/100 g oil) and oleic acid (14.0 g/100 g oil). These findings provide important guidance for introducing red clover seed oil into pharmaceutical products or as functional foods.
显示更多 [+] 显示较少 [-]Recent progress and prospects in production and identification of umami peptides from marine proteins 全文
2024
Di Hu | Zhenxiao Zheng | Botao Liang | Yating Jin | Cui Shi | Qianqian Chen | Lai Wei | Dongcheng Li | Chengcheng Li | Jing Ye | Zhiyuan Dai | Xiaoli Dong | Yanbin Lu
Umami peptides, the flavor compounds mainly derived from natural proteins, provide a pleasant taste for humans and exhibit a variety of biological activities, such as antioxidant and lipid-lowering properties. Marine proteins, which serve as excellent sources of umami peptides, have become a focal point of research. This review introduces the research progress on reported marine umami peptides. Firstly, it discusses the structural characteristics of umami peptides and the mechanism behind their formation to create an umami taste. It then presents several commonly used techniques for preparing and regulating umami peptides while summarizing the advantages and disadvantages of each technique. Finally, this review describes the potential application prospects for core technologies within Industry 4.0—such as molecular simulation, artificial intelligence, big data analysis, cloud computing, and blockchain technology—which could bring new opportunities for the development of marine umami peptides.
显示更多 [+] 显示较少 [-]Physical, thermal, and storage stability of multilayered emulsion loaded with β-carotene 全文
2024
Sivapratha Sivabalan | Carolyn F. Ross | Juming Tang | Shyam S. Sablani
Carotenoids are colored bioactive substances increasingly used due to their antioxidant properties, vitamin A precursor role, and ability to function as a natural food color. Knowledge of carotenoid behavior during high-heat processing and subsequent storage in emulsified food matrix is essential to expand their application natural food colors and neutraceuticals. Firstly, the physical, thermal, and colloidal stability of emulsions constructed from octenyl succinic anhydride-modified starch (OSA starch)-chitosan multilayered interfaces were investigated. Results of charge reversal from −32.4 ± 1.9 mV to +38.0 ± 0.8 mV indicate that multilayered interfaces were formed in emulsions. As measured by Z-average size, the emulsions were stable after the thermal treatment at 121 °C for 60 min, thus demonstrating a novel heat-stable multilayered emulsion. Subsequently, a select multilayered emulsion was loaded with β-carotene, and its storage stability was assessed. The degradation of β-carotene in an oil-in-water emulsion was better described with zeroth order kinetics; β-carotene dissolved in bulk oil was better described using a second-order kinetic equation. The presence of an encapsulating material around the oil droplets loaded with β-carotene enhanced its stability, which makes it instrumental in extending shelf-life and maintaining a consistent appearance. The results can be used to predict the availability of β-carotene during storage.
显示更多 [+] 显示较少 [-]Colorful and nutritious abundance: potential of natural pigment application in aquatic products 全文
2024
Ning Ding | Yongjie Zhou | Peipei Dou | Sam K. C. Chang | Ruifang Feng | Hui Hong | Yongkang Luo | Yuqing Tan
The promising future of natural colors in the food industry aligns with the shift in consumer preference toward healthier food options. These naturally derived ingredients gradually replace their artificial counterparts and find applications in a wide range of food categories, and aquatic products have emerged as one of them. In this work, we introduced the characteristics and extraction of several main types of natural pigments and also explored the positive outcomes of integrating the pigments, such as carotenoids, curcumin, anthocyanins, and betalains, in aquatic product processing and preservation. Their outstanding antioxidant and dyeing properties contribute to the production and storage of various aquatic products. This review aims to provide a comprehensive understanding of the current state of natural pigment applications in aquatic products and to provide inspiration for future research and industry practices.
显示更多 [+] 显示较少 [-]Storage and thermal stability of selected vegetable purees processed with microwave-assisted thermal sterilization 全文
2024
Zeyad Albahr | Juthathip Promsorn | Zhongwei Tang | Girish M. Ganjyal | Juming Tang | Shyam S. Sablani
The impact of microwave-assisted thermal sterilization (MATS) on three natural pigments and their storage stability in vegetable purees was investigated. We selected carrot puree for beta carotene, red cabbage puree for anthocyanins, and red beetroot puree for betalains. The purees were packaged in multilayer flexible pouches of AlOx-coated PET (12 μm)//AlOx-coated PET (12 μm)//AlOx-coated PET (12 μm)//ONy (15 μm)//CPP (70 μm), then processed with the MATS system to Fo = 6 to 11 min. After MATS treatment, the pouches were stored for 6 months at a storage temperature of 37.8 °C. The MATS treatment had a significant impact (p < 0.05) on the instrumental colors of three purees, with the total color difference (ΔE) ranging between 6.0 and 10.5. Similarly, the concentration of betalains experienced degradation by 20%−29% after the MATS treatment, while beta-carotene concentration showed a high retention. In addition, the pH of the purees declined considerably (p < 0.05) after the MATS treatment. Over the 6 months of storage at 37.8 °C, the PET-metal oxide pouches maintained the moisture content in all the purees, as the weight loss was only 0.43%−0.45%. The pigments in the MATS-processed purees had different levels of stability; ΔE values varied between 4.23 and 12.3. Beta-carotene was the most stable pigment, followed by betalains and anthocyanins. The degradation of both betalains and anthocyanins during storage was explained by first and fractional conversion models. MATS processing and packages with high gas barriers can therefore be used to preserve selected vegetable purees rich in natural pigments.
显示更多 [+] 显示较少 [-]Chemical, rheological, and volatile profiling of microalgae Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species 全文
2024
Johannes Magpusao | Indrawati Oey | Biniam Kebede
Microalgae are increasingly regarded as a sustainable source of novel food and functional products due to their nutritional composition. This study aimed to conduct an in-depth analysis of the chemical, microstructural and rheological, and volatile-flavour related properties of Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species. Chemometric data analysis was employed to integrate the multivariate data, investigate the classification among the four species, and identify discriminating and distinct features. Arthrospira is high in protein content, and Nannochloropsis is lipid-rich with dominantly polyunsaturated fatty acids. Isochrysis is rich in carotenoids and total phenolics, while Tetraselmis is high in carbohydrates. Key discriminant volatile markers encompass aldehydes, terpenes, and hydrocarbons for Arthrospira; ketones and alcohols for Nannochloropsis; aldehydes, ketones, and sulfur-containing compounds for Tetraselmis; and furans and aldehydes for Isochrysis. Moreover, Arthrospira and Isochrysis demonstrate elevated viscosity and notable thickening potential. In summary, the different microalgal biomass studied in this study showcase unique compositional, rheological, and volatile properties, highlighting their potential as functional ingredients for diverse applications in the food and pharmaceutical industries.
显示更多 [+] 显示较少 [-]Comparative study on the physicochemical properties, functional components, color and anthocyanins profile of Aronia melanocarpa juice using different sterilization methods 全文
2024
Xinran Lv | Tian Lan | Shujuan Wang | Xinjie Li | Shihan Bao | Tongyin Li | Xiangyu Sun | Tingting Ma
Investigating the influences of different sterilization methods on overall juice quality is essential for the production of high-quality juice. The effects of ultra-high temperature instantaneous sterilization (UHT), thermosonication (TS), high hydrostatic pressure sterilization (HHP), and irradiation sterilization (IS) on the physicochemical properties, functional components, and color of Aronia melanocarpa juice (AMJ) were investigated. In addition, anthocyanin target metabolomics were used to explore the influences of different sterilization methods on the AMJ anthocyanin profile. All sterilization treatments effectively ensured the microbial safety of AMJ, and the AMJ viscosity was noticeably declined after sterilization (p < 0.05). Except for HHP, the other treatments aggravated AMJ browning (p < 0.05). Both TS and HHP treatments significantly enhanced or preserved the total polyphenols, flavonoids, and anthocyanins in AMJ and retained the original juice color, whereas UHT and IS treatments were not conducive to maintaining these characteristics. TS treatment significantly increased cyanidin-3-O-galactoside (C-3-O-gal) and cyanidin-3-O-arabinoside (C-3-O-ara) contents in AMJ by 7.98% and 5.90%, while IS resulted in a significant decrease of 15.74% and 10.46% (p < 0.05). C-3-O-gal and C-3-O-ara were the major reasons for the significant upregulation and downregulation of the total monomeric anthocyanins contents (TMAC) in the AMJ after TS and IS treatment, respectively. Malvidin-3-O-glucoside (M-3-O-glu), Cyanidin-3-O-(6-O-malonyl-β-D-glucoside) and Kaempferol-3-O-rutinoside (K-3-O-rut) might be markers of differential metabolites produced by the TS, HHP, and IS treatments, respectively. Correlation analysis indicated that Cyanidin-3-O-xyloside (C-3-O-xyl), C-3-O-ara, and Pelargonidin-3-O-arabinoside (P-3-O-ara) might be the principal contributed to the antioxidant capacity of AMJ. The research results are anticipated to supply technical reference for AMJ processing.
显示更多 [+] 显示较少 [-]Drivers behind consumers' intent to purchase deodorized soy milk 全文
2024
Jingyi Zhou | Yeon Ho Shin | Seung Eun Jung | Lingyan Kong
Soy milk, rich in vitamin D and calcium, is a common alternative to dairy milk. However, its distinct 'beany off-flavor' has limited its acceptance, particularly in Western countries. A new technique employing preformed 'empty' V-type starch has been introduced to scavenge this off-flavor, aiming to promote soy milk consumption. The purpose of this study was to identify predictors of consumers' purchase intention of 'empty' V-type starch deodorized soy milk, particularly among college students. In this cross-sectional study, 105 college students were surveyed by a validated survey instrument that measures their perceptions of sensory quality, healthiness, price, environmental friendliness, food safety, and purchase intention of a novel product – 'empty' V-type starch deodorized soy milk. Additionally, demographic data were gathered to understand any correlations between these factors and the students' willingness-to-purchase of the deodorized soy milk. From the results, more than 80% of the participants expressed a positive attitude toward the 'empty' V-type starch-deodorized soy milk. The two dominant drivers behind their purchasing decision were Sensory Quality and Environmental Concern. Accordingly, it is crucial to highlight the improved sensory profile and the environmental friendliness of this soy milk product in order to achieve marketing success.
显示更多 [+] 显示较少 [-]Controlled atmosphere effects on postharvest quality and antioxidant capacity of blue honeysuckle (Lonicera caerulea L.) 全文
2024
Jinli Qiao | Liangchuan Guo | Junwei Huo | Dejian Huang | Yan Zhang
Changes in the quality of blue honeysuckle fruit following exposure to air or controlled atmospheres (CA1: 20% O2 and 20% CO2; CA2: 5% O2 and 20% CO2; CA3: 5% O2 and 10% CO2) were investigated. The 'Lanjingling’ blue honeysuckle was stored at a temperature of −1 °C for a duration of 28 d. An elevated concentration of CO2 led to a reduction in fruit weight loss, ethanol content, and respiration rate, while simultaneously increasing the epicuticular wax coverage index, firmness, TSS, ascorbic acid, polyphenols, and antioxidant capacity. Notably, treatment with high levels of carbon dioxide (20% CO2) led to an approximately 150% increase in total anthocyanin content compared to control conditions. Additionally, it was observed that reducing the oxygen content from 20% to 5% had a detrimental effect on the antioxidant capacity of blue honeysuckle during storage. Specifically, there were decreases of 10.4%, 16.8%, and 6.7% in DPPH, ABTS, and FRAP, respectively. The respiration rate is increased by treatment with 5% O2 and 5% CO2, which may result in accelerated senescence of blue honeysuckle. After 28 d, the treatment resulted in a respiration rate that was 1.49 times higher than the control. Hence, it can be deduced that maintaining a controlled atmosphere containing 20% O2 and 20% CO2 can be deemed an effective method of blue honeysuckle for prolonging storage life and safeguarding its bioactive components.
显示更多 [+] 显示较少 [-]