细化搜索
结果 1-10 的 203
Effects of sediment-associated Cu on Tubifex tubifex – Insights gained by standard ecotoxicological and novel, but simple, bioturbation endpoints 全文
2020
Thit, Amalie | Banta, Gary T. | Palmqvist, Annemette | Selck, Henriette
Sediments serve as both source and sink of contaminants (e.g., Cu) and biologically important materials (e.g., metals, nutrients). Bioturbation by benthic organisms is ecologically relevant as bioturbation affects the physio-chemical characteristics of sediments, thus altering nutrient and contaminant distribution and bioavailability. We examined the effects of sediment-associated Cu on T. tubifex with conventional toxicity endpoints, such as mortality and growth, and less commonly used non-destructive endpoints, such as bioturbation and feeding. An experimental approach was developed to examine the applicability of simple methods to detect effects on bioturbation and feeding. Two experiments were conducted with 7-day exposures to uncontaminated or Cu-spiked natural sediment at six Cu concentrations to examine Cu bioaccumulation and effects. Endpoints included worm mortality, feeding rate and growth (experiment A) and worm bioturbation (particle diffusion and maximum penetration depth, experiment B). A microparticle tracer was placed on the sediment surface and vertical particle transport was followed over time. Adverse effects were detected for all endpoints (bioturbation, feeding rate, growth and survival): a slight positive effect at the lowest Cu concentrations followed by adverse effects at higher concentrations indicating hormesis. These simple, non-destructive endpoints, provided valuable information and demonstrated that sediment-associated contaminants, such as Cu, can influence bioturbation activity, which in turn may affect the distribution of sediment-bound or particulate pollutants, such as the plastic microparticles studied here. Thus, we suggest to use simple endpoints, such as bioturbation and feeding rate, in ecotoxicity testing since these endpoint account for the influence of interactions between pollutants and benthos and, thus, increase ecological relevance.
显示更多 [+] 显示较少 [-]Environmental and human health risks of arsenic in gold mining areas in the eastern Amazon 全文
2020
Souza Neto, Hamilton Ferreira de | Pereira, Wendel Valter da Silveira | Dias, Yan Nunes | Souza, Edna Santos de | Teixeira, Renato Alves | Lima, Mauricio Willians de | Ramos, Silvio Junio | Amarante, Cristine Bastos do | Fernandes, Antônio Rodrigues
Knowledge of arsenic (As) levels in gold (Au) mining areas in the Amazon is critical for determining environmental risks and the health of the local population, mainly because this region has the largest mineral potential in Brazil and one of the largest in the world. The objective of this study was to assess the environmental and human health risks of As in tailings from Au exploration in the eastern Amazon. Samples were collected from soils and tailings from different exploration forms from 25 points, and the total concentration, pollution indexes and human health risk were determined. Concentrations of As were very high in all exploration areas, especially in tailings, whose maximum value reached 10,000 mg kg⁻¹, far above the investigation value established by the Brazilian National Council of the Environment, characterizing a polluted area with high environmental risk. Exposure based on the daily intake of As demonstrated a high health risk for children and adults, whose non-carcinogenic risk indexes of 17.8, extremely above the acceptable limit (1.0) established by the United States Environmental Protection Agency. High levels of As in reactive fractions in underground, cyanidation, and colluvium mining areas, as well as extremely high gastric and intestinal bioaccessibility were found, suggesting that high levels may be absorbed by the local population. The results show that the study area is highly polluted through Au mining activities, putting the environment and population health at risk, and that there is an urgent need for intervention by the environmental control agencies for remediation.
显示更多 [+] 显示较少 [-]Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar’s recalcitrance 全文
2020
Qiu, Zhen | Tang, Jiawen | Chen, Jinhuan | Zhang, Qiuzhuo
Biochar sequesters cadmium (Cd) by immobilisation, but the process is often less effective in field trials than in the laboratory. Therefore, the involvement of soil components should be considered for predicting field conditions that could potentially improve this process. Here, we used biochar derived from Spartina alterniflora as the amendment for Cd-contaminated soil. In simulation trials, a mixture of kaolin, a representative soil model component, and S. alterniflora-derived biochar immobilised Cd by forming silicon-aluminium-Cd-containing complexes. Interestingly, the biochar recalcitrance index value increased from 48% to 53%–56% because of the formation of physical barriers consisting of kaolinite minerals and Cd complexes. Pot trials were performed using Brassica chinensis for evaluating the effect of S. alterniflora-derived biochar on plant growth in Cd-contaminated soil. The bio-concentration factor values in B. chinensis were 24%–31% after soil remediation with biochar than in control plants. In summary, these results indicated that soil minerals facilitated Cd sequestration by biochar, which reduced Cd bioavailability and improved the recalcitrance of this soil amendment. Thus, mechanisms for effective Cd remediation should include biochar-soil interactions.
显示更多 [+] 显示较少 [-]Improved prediction of sediment toxicity using a combination of sediment and overlying water contaminant exposures 全文
2020
Zhang, Yanfeng | Spadaro, David A. | King, Josh J. | Simpson, Stuart L.
The choice of sediment quality assessment methodologies can strongly influence assessment outcomes and management decisions for contaminated sites. While in situ (field) methods may potentially provide greater realism, high costs and/or complex logistics often prevent their use and assessment must rely on laboratory-based methods. In this study, we utilised static-renewal and flow-through ecotoxicology tests in parallel on sediments with a wide range of properties and varying types and concentrations of contaminants. The prediction of chronic effects to amphipod reproduction was explored using multiple linear regression (MLR). The study confirmed the considerable over-estimation of the risk of toxicity of contaminated sediments in field locations when assessments rely on the results of laboratory-based static and static-renewal tests. Improved prediction of toxicity risks was achieved using a combination of contaminant exposure measures from sediment and overlying water. Existing sediment and water quality guideline values (GVs) were effective for predicting risks posed by sediments containing mixtures of common metal and organic contaminants. For 17 sediments with paired data sets from static-renewal and flow-through tests, the best prediction of toxicity to reproduction was achieved using a 2-parameter MLR that included hazard quotients for sediment contaminants and toxic units for dissolved metals (r² = 0.892). The inclusion of particle size, organic carbon and acid-volatile sulfide did not improve toxicity predictions, despite these parameters being recognised as modifying contaminant bioavailability. The use of dilute-acid-extractable metal concentrations in place total recoverable metal concentrations did not improve the predictions. The study also confirmed that sediments existing within the estuarine and marine bays of Sydney Harbour pose significant risks of adverse effects to benthic organisms.
显示更多 [+] 显示较少 [-]In vitro avian bioaccessibility of metals adsorbed to microplastic pellets 全文
2020
Microplastics are known to be associated with co-contaminants, but little is understood about the mechanisms by which these chemicals are transferred from ingested plastic to organisms. This study simulates marine avian gastric conditions in vitro to examine the bioaccessibility of authigenic metals (Fe, Mn) and trace metals (Co, Pb) that have been acquired by polyethylene microplastic pellets from their environment. Specifically, different categories of pellet were collected from beaches in Cornwall, southwest England, and exposed to an acidified saline solution of pepsin (pH ∼ 2.5) at 40 °C over a period of 168 h with extracted metal and residual metal (available to dilute aqua regia) analysed by ICP-MS. For Fe, Mn and Co, kinetic profiles consisted of a relatively rapid initial period of mobilisation followed by a more gradual approach to quasi-equilibrium, with data defined by a diffusion model and median rate constants ranging from about 0.0002 (μg L⁻¹)⁻¹ h⁻¹ for Fe to about 7 (μg L⁻¹)⁻¹ h⁻¹ for Co. Mobilisation of Pb was more complex, with evidence of secondary maxima and re-adsorption of the metal to the progressively modified pellet surface. At the end of the time-courses, maximum total concentrations were 38.9, 0.81, 0.014 and 0.10 μg g⁻¹ for Fe, Mn, Co and Pb, respectively, with maximum respective percentage bioaccessibilities of around 60, 80, 50 and 80. When compared with toxicity reference values for seabirds, the significance of metals acquired by microplastics from the environment and exposed to avian digestive conditions is deemed to be low, but studies of a wider range of plastics and metal associations (e.g. as additives) are required for a more comprehensive risk assessment.
显示更多 [+] 显示较少 [-]Elevated CO2 mitigates the negative effect of CeO2 and Cr2O3 nanoparticles on soil bacterial communities by alteration of microbial carbon use 全文
2020
Luo, Jipeng | Song, Yuchao | Liang, Jiabin | Li, Jinxing | Islam, Ejazul | Li, Tingqiang
The interactive effects of elevated atmospheric CO₂ and nanoparticles (NPs) on the structure and function of soil bacterial community remain unknown. Here we compared the impacts of CeO₂ (nCeO₂) and Cr₂O₃ (nCr₂O₃) nanoparticles on the taxonomic compositions and functional attributes of bacterial communities under elevated CO₂ (eCO₂). The stimulated enzyme activities (dehydrogenase, acid phosphatase and urease), increased microbial biomass carbon (MBC), and higher bacterial alpha-diversity were observed under the combined effects of eCO₂ and NPs compared to the single NP treatment, indicating eCO₂ could mitigate the adverse effect of NPs on soil microorganisms. NPs and eCO₂ are important factors influencing the alpha- and beta-diversity (17% and 18% of variations were explained) as well as functional profile (20% and 26% of variations were explained) of bacterial communities. Rising CO₂ level promoted the resilience of NP-resistant bacterial populations, primarily the members of Alphaproteobacteria, Gammaproteobacteria and Bacteroidia, which are also characterized by the fast carbon use capability. Moreover, the significantly (P < 0.05) higher metabolic quotient (qCO₂), reduced available carbon and overrepresented carbon metabolism genes at eCO₂vs. ambient CO₂ (aCO₂) indicate the acceleration of available carbon turnover in NP-exposed soils. Correlation analysis revealed that mitigation of NPs toxicity by eCO₂ could be attributed to the remarkable decline of bioavailable metals disassociated from NPs and available carbon level, as well as promotion of the rapid carbon-metabolizing microbes. Our study pointed out the positive role of eCO₂ in alleviating the adverse effect of NPs on microbiological soil environment, and results can serve as important basis in establishing guidelines for lowering the ecotoxicity of NPs.
显示更多 [+] 显示较少 [-]The response of arsenic bioavailability and microbial community in paddy soil with the application of sulfur fertilizers 全文
2020
Tang, Xianjin | Li, Luyao | Wu, Chuan | Khan, Muhammed Imran | Manzoor, Maria | Zou, Lina | Shi, Jiyan
Arsenic (As) has been recognized as one of the most toxic metalloids present in the surface soil contaminating food chain and posing threat to human life. Sulfur (S) fertilizer is often supplied in paddy soil for rice growth, but its impact on As mobility and related bacteria remains poorly understood. In this study, a pot experiment was set up with two different types of sulfur treatments (element sulfur and Na₂SO₄) to evaluate the effect of sulfur fertilizers on As speciation in porewater, As fractions in soil, As accumulation in rice plants. Besides, rhizosphere bacterial composition and functional genes that might influence As mobility were also studied. The results revealed that the addition of 150 mg/kg Na₂SO₄ decreased As(III) and As(V) concentrations in soil porewater at maturation stage by 77% and 64%, respectively. With the same sulfur content, Na₂SO₄ was more effective than element sulfur. The addition of sulfur fertilizers promoted rice growth and reduced As accumulation in shoots, further reduced As translocation from root to above-ground parts by 39–59%. The addition of sulfur fertilizers had little effect on genes involved in As metabolism. However, the relative abundance of Fe(III) and sulfate reduction related genera increased with the addition of 150 mg/kg Na₂SO₄, consistent with the increase of Fe(III) reducing bacteria Geobacteraceae and sulfate reducing gene dsrA. The phenomenon likely influenced the decrease of As concentrations in soil porewater and rice uptake. The outcomes indicate that promoting Fe- and S- reducing bacteria in the rhizosphere by sulfur fertilizers may be one way to reduce As risk in the soil-rice system.
显示更多 [+] 显示较少 [-]Contrasting effects of Cr(III) and Cr(VI) on lettuce grown in hydroponics and soil: Chromium and manganese speciation 全文
2020
Park, Jin Hee
Chromium (Cr) is a toxic element among which hexavalent chromium [Cr(VI)] is more toxic than trivalent chromium [Cr(III)]. Chromium can be reduced or oxidized in soil because soil is a complex medium and various soil components affect redox reaction of Cr in soil. Therefore, Cr speciation in hydroponics and soil was compared and Cr uptake and speciation by lettuce grown in the media were evaluated. Higher phytotoxicity was found in Cr(III) spiked soil than in Cr(VI) spiked soil, while Cr toxicity was higher in Cr(VI) treated hydroponics than Cr(III) treated hydroponics. Chromium was mainly accumulated in lettuce roots as Cr(III), and more Cr was translocated from roots to shoots grown in Cr(VI) treated hydroponics than Cr(III) treated hydroponics. Accumulation of Cr in roots grown in Cr(III) treated nutrient solution reduced Fe, K, Ca, Mg, and P uptake in lettuce. Chromium valence state was Cr(III) in lettuce leaves and roots grown in both Cr(III) and Cr(VI) treated hydroponics and soil. Chromium speciation in hydroponically grown lettuce roots was Cr(III) coordinated with 6 oxygens in the first shell and 2 or 4 carbons in the second shell as analyzed by X-ray absorption spectroscopy (XAS), which was similar to chromium acetate. The valence state of Cr in Cr(III) and Cr(VI) treated nutrient solution was not changed, while Cr(VI) was reduced to Cr(III) in Cr(VI) spiked soil by soil organic matter. Spiking of Cr(III) induced reduction of Mn in soil, which resulted in an increase of bioavailable Mn concentration in the Cr(III) spiked soil. Therefore, the increased phytotoxic effect for lettuce in Cr(III) spiked soil can be attributed to the reduction of Mn and subsequent release of Mn(II). For Cr(III) contaminated soil, Mn speciation should be considered, and bioavailable Mn concentration should be monitored although Cr existed as Cr(III) in soil.
显示更多 [+] 显示较少 [-]Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms 全文
2020
A novel amino-functionalized hydrochar material (referred to NH₂–HCs) was prepared and used as the soil amendment to immobilize multi-contaminated soils for the first time. The results showed that the application of NH₂–HCs significantly improved (P < 0.05) soil properties (i.e., pH value, cation exchange capacity and organic content). By introduction of NH₂–HCs, the contaminated soil showed the highest value of 96.2%, 52.2% and 15.5% reductions in Cu, Pb and Cd bioavailable concentrations and the leaching toxicity of Cu, Pb and Cd were remarkably reduced by 98.1%, 31.3% and 30.4%, respectively. Most of exchangeable Cu, Pb and Cd reduced were transformed into its less available forms of oxidizable and residual fractions. Potential ecological risk assessment indicated that the element Cd accounted for the most of total risks in NH₂–HCs amended soils. The mechanism study indicated that surface complexation, chemical chelating and cation-pi interaction of NH₂–HCs played a vital role in the immobilization of heavy metals. Pot experiments further verified that the application of NH₂–HCs significantly improved plant growth and reduced metal accumulations. The present study offered a novel approach to prepare amino-functionalized hydrochars with great potential as the green and alternative amendments for efficiently immobilizing heavy metals in multi-contaminated soil.
显示更多 [+] 显示较少 [-]Reduced phytotoxicity of nonylphenol on tomato (Solanum lycopersicum L.) plants by earthworm casts 全文
2020
Jiang, Lei | Wang, Bingjie | Liang, Jingqi | Pan, Bo | Yang, Yi | Lin, Yong
Concentrations as high as thousands of milligrams per kilogram (dry weight) of nonylphenol (NP), an endocrine-disrupting chemical of great concern, have been reported in soil. Soil is considered one of the primary pathways for exposure of crop plants to NP. However, there have been few studies on the toxicity of soil NP to crop plants, especially with comprehensive consideration of the application of organic fertiliser which is a common agricultural practice. In this study, tomato plants were grown in soils treated with NP in the presence and/or absence of earthworm casts (EWCs). After four weeks, we tested the physiological and biochemical responses (accumulative levels of hydrogen peroxide (H₂O₂) and superoxide anion radicals (O₂-·), total chlorophyll content, degree of membrane lipid peroxidation, activities of defence-related enzymes, and level of DNA damage) and the changes in plant growth (elongation and biomass). The growth inhibition, reactive oxygen species (H₂O₂ and O₂-·) accumulation, decrease in chlorophyll content, increase in activity of defence-related enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione S-transferase and glutathione reductase), enhancement of membrane lipid peroxidation, and DNA damage in NP-treated seedlings were clearly reversed by the intervention of EWCs. In particular, the suppressed elongation, biomass, and chlorophyll content in tomato plants exposed to NP alone were significantly restored by EWCs to even greater levels than those of the undisturbed control. In other words, EWCs could efficiently invigorate the photosynthesis of crops via up-regulating the chlorophyll content, thereby overwhelming the NP stress on plant growth. Accordingly, except for reducing the bioavailability of soil NP as reported in our previous study, EWCs could also help crop plants to cope with NP stress by strengthening their stress resistance ability. Our findings are of practical significance for the formulation of strategies to relieve the negative effects of soil NP on crop growth.
显示更多 [+] 显示较少 [-]