细化搜索
结果 1-10 的 311
An amphibian high fat diet model confirms that endocrine disruptors can induce a metabolic syndrome in wild green frogs (Pelophylax spp. complex)
2022
Veyrenc, Sylvie | Regnault, Christophe | Sroda, Sophie | Raveton, Muriel | Reynaud, Stéphane
A pre-diabetes syndrome induced by endocrine disruptors (ED) was recently demonstrated in the model amphibian Silurana (Xenopus) tropicalis and was suggested to be a potential cause of amphibian population decline. However, such effects have not been found in wild type frogs exposed to ED and the capacity of amphibians to physiologically develop diabetes under natural conditions has not been confirmed. This study showed that a high fat diet (HFD) model displaying the important characteristics of mammal HFD models including glucose intolerance, insulin resistance and nonalcoholic fatty liver disease (NAFLD) can be developed with green frogs (Pelophylax spp.). Wild green frogs exposed to 10 μg L⁻¹ benzo [a]pyrene (BaP) for 18 h also displayed several characteristics of the pre-diabetes phenotype previously observed in Xenopus including glucose intolerance, gluconeogenesis activation and insulin resistance. The study results confirmed that metabolic disorders induced by ED in wild green frogs are typical of the pre-diabetes phenotype and could serve as a starting point for field studies to determine the role of ED in the decline of amphibian populations. From an environmental perspective, the response of wild green frogs to different ED (10 μg L⁻¹) suggests that a simple glucose-tolerance test could be used on wild anurans to identify bodies of water polluted with metabolic disruptors that could affect species fitness.
显示更多 [+] 显示较少 [-]Inhibition effect of 2,4,6-trinitrotoluene (TNT) on RDX degradation by rhodococcus strains isolated from contaminated soil and water
2022
Gupta, Swati | Siebner, Hagar | Ramanathan, Gurunath | Ronen, Zeev
2,4,6-trinitrotoluene (TNT) is a highly toxic explosive that contaminates soil and water and may interfere with the degradation of co-occurring compounds, such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). We proposed that TNT may influence RDX-degrading bacteria via either general toxicity or a specific effect on the |RDX degradation mechanisms. Thus, we examined the impact of TNT on RDX degradation by Rhodococcus strains YH1, T7, and YY1, which were isolated from an explosives-polluted environment. Although partly degraded, TNT did not support the growth of any of the strains when used as either sole carbon or sole nitrogen sources, or as carbon and nitrogen sources. The incubation of a mixture of TNT (25 mg/l) and RDX (20 mg/l) completely inhibited RDX degradation. The effect of TNT on the cytochrome P450, catalyzing RDX degradation, was tested in a resting cell experiment, proving that TNT inhibits XplA protein activity. A dose-response experiment showed that the IC50/trans values for YH1, T7, and YY1 were 7.272, 5.098, and 9.140 (mg/l of TNT), respectively, illustrating variable sensitivity to TNT among the strains. The expression of xplA was also strongly suppressed by TNT. Cells that were pre-grown with RDX (allowing xplA expression) and incubated with ammonium chloride, glucose, and TNT, completely transformed into their amino dinitrotoluene isomers and formed azoxy toluene isomers. The presence of oxygen-insensitive nitroreductase that enable reduction of the nitro group in the presence of O2 in the genomes of these strains suggests that they are responsible for TNT transformation in the cultures. The experimental results concluded that TNT has an adverse effect on RDX degradation by the examined strains. It inhibits RDX degradation due to the direct impact on cytochrome P450, xplA, or its expression. The tested strains can transform TNT independently of RDX. Thus, degradation of both compounds is possible if TNT concentrations are below their IC50 values.
显示更多 [+] 显示较少 [-]Remodeling on adipocytic physiology of organophosphorus esters in mature adipocytes
2022
Liu, Ying | Le, Yifei | Xu, Mengting | Wang, Wanyue | Chen, Hang | Zhang, Quan | Wang, Cui
The emerging endocrine disruption chemicals organophosphate esters (OPEs) pose high risk of metabolic disruption. However, limited information is available on physiological disturbance of OPEs on adipose, a major endocrine and metabolic organ. In this study, physiological change was investigated after exposing 3T3-L1fully differentiated adipocytes to six OPEs at non-cytotoxic concentrations. We found two chlorinated-OPEs (tris-(2-chloro-1-(chloromethyl) ethyl) phosphate (TDCPP) and tris(2-chloroisopropyl) phosphate (TCPP)) and two alkyl-OPEs (tributyl phosphate (TBP) and tris (2-butoxyethyl) phosphate (TBEP)) induced inflammation-like adipokines (chemoattractant protein 1 and interleukin-6), respectively. Increment of insulin-resistance-related hormones (resistin and leptin) were observed under TDCPP, TCPP, and TBP exposure. Functional and mechanistic investigation revealed that all of the compounds inhibited lipolysis at basal level through dephosphorylated HSLˢᵉʳ⁵⁶³, the rate limiting enzyme of lipolysis. Triphenyl phosphate (TPhP), tricresyl phosphate (TCP), TDCPP, TBP and TBEP enhanced glucose uptake at both basal and insulin-stimulated status. We evidenced that impact was independent of the classical pIRSˢᵉʳ⁶³⁹/pAKTˢᵉʳ⁴⁷³ nor the insulin-independent AMPK pathway. The elevated mRNA of slc2a4 and its transcriptional factor LXRα may, at least partially, explain for the increase of glucose uptake. Given the focus within the endocrine disruption on glands, it would be prudent not to ignore endocrinal impact on adipocytes.
显示更多 [+] 显示较少 [-]Effect of polystyrene nanoplastics on cell apoptosis, glucose metabolism, and antibacterial immunity of Eriocheir sinensis
2022
Nan, Xingyu | Jin, Xingkun | Song, Yu | Zhou, Kaimin | Qin, Yukai | Wang, Qun | Li, Weiwei
The adverse effects of plastic waste and nanoplastics on the water environment have become a focus of global attention in recent years. In the present study, using adult Chinese mitten crabs (Eriocheir sinensis) as an animal model, the bioaccumulation and the in vivo and in vitro toxicity of polystyrene nanoplastics (PS NPs), alone or in combination with the bacteria, were investigated. This study aimed to investigate the effects of PS NPs on apoptosis and glucose metabolism in Chinese mitten crabs, and whether PS NPs could synergistically affect the antibacterial immunity of crabs. We observed that NPs were endocytosed by hemocytes, which are immune cells in crustaceans and are involved in innate immunity. The RNA sequencing data showed that after hemocytes endocytosed NPs, apoptosis and glucose metabolism-related gene expression was significantly induced, resulting in abnormal cell apoptosis and a glucose metabolism disorder. In addition, exposure to NPs resulted in changes in the antimicrobial immunity of crabs, including changes in antimicrobial peptide expression, survival, and bacterial clearance. In summary, NPs could be endocytosed by crab hemocytes, which adversely affected the cell apoptosis, glucose metabolism, and antibacterial immunity of Eriocheir sinensis. This study revealed the effects of NPs on crab immunity and lays the foundation for further exploration of the synergistic effect of NPs and bacteria.
显示更多 [+] 显示较少 [-]Cross-sectional and longitudinal associations of urinary zinc with glucose-insulin homeostasis traits and type 2 diabetes: Exploring the potential roles of systemic inflammation and oxidative damage in Chinese urban adults
2022
Ye, Zi | Liang, Ruyi | Wang, Bin | Yu, Linling | Liu, Wei | Wang, Xing | Xiao, Lili | Ma, Jixuan | Zhou, Min | Chen, Weihong
The link between zinc exposure and glucose metabolism or the development of type 2 diabetes (T2D) is controversial, and underlying mechanisms are unclear. This study aimed to explore the associations of zinc exposure with glucose-insulin homeostasis traits and the long-term effects of zinc on the development of T2D, and further to estimate the potential roles of inflammation and oxidative damage in such relationships. We investigated 3890 urban adults from the Wuhan-Zhuhai cohort, and followed up every three years. Mixed linear model was applied to estimate dose-response associations between urinary zinc and glycemia traits [fasting plasma insulin (FPI), fasting plasma glucose (FPG), insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR), and β-cell dysfunction (homeostasis model assessment of β-cell function, HOMA-B)], as well as zinc and biomarkers for systemic inflammation (C-reactive protein) and oxidative damage (8-isoprostane and 8-hydroxy-2′-deoxyguanosine). Logistic regression model and Cox regression model were conducted to evaluate the relationships between urinary zinc and prevalence and incidence of T2D, respectively. We further performed mediation analysis to assess the roles of inflammation and oxidative damage biomarkers in above associations. At baseline, we observed significant dose-response relationships of elevated urinary zinc with increased FPI, FPG, HOMA-IR, and T2D prevalence and decreased HOMA-B, and such associations could be strengthened by increased C-reactive protein, 8-isoprostane, and 8-hydroxy-2′-deoxyguanosine. Elevated C-reactive protein significantly mediated 9.09% and 17.67% of the zinc-related FPG and HOMA-IR increments, respectively. In longitudinal analysis, a significantly positive association between urinary zinc and T2D incidence was observed among subjects with persistent high urinary zinc levels when compared with those with persistent low zinc levels. Our results suggested that high levels of zinc exposure adversely affected on glucose-insulin homeostasis and further contributed to increased risk of T2D cross-sectionally and longitudinally. Moreover, inflammatory response might play an important role in zinc-related glucose metabolic disorder.
显示更多 [+] 显示较少 [-]Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish
2021
Zhao, Yao | Qin, Zhen | Huang, Zhuizui | Bao, Zhiwei | Luo, Ting | Jin, Yuanxiang
Various microplastics (MPs) are found in the environment and organisms. MP residues in organisms can affect health; however, their impacts on metabolism in aquatic organisms remain unclear. In this study, zebrafish embryos were exposed to polyethylene MPs with sizes ranging from 1 to 4 μm at concentrations of 0, 10, 100, and 1000 μg/L for 7 days. Through qPCR technology, the results indicated that zebrafish exposed to polyethylene MPs exhibited significant change in microbes of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia, etc. Moreover, 16S RNA gene sequencing revealed that there was a significant difference in alpha diversity between the control and 1000 μg/L MP-treated groups. At the genus level, the abundance of Aeromonas, Shewanella, Microbacterium, Nevskia and Methyloversatilis have increased remarkably. Conversely, the abundance of Pseudomonas, Ralstonia and Stenotrophomonas were significant reduction after MPs exposure. In addition, the levels of TG (triglyceride), TCHO (total cholesterol), NEFA (nonesterified fatty acid), TBA (total bile acid), GLU (glucose) and pyruvic acid significantly changed in MP-treated larval zebrafish, indicating that their metabolism was disturbed by MPs. Transcriptional levels of glucose and lipid metabolism-related genes showed a decreasing trend. Furthermore, LC/MS-based nontargeted metabolomics analysis demonstrated that a total of 59 phospholipid-related substances exhibited significant changes in larval fish treated with 1000 μg/L MPs. The mRNA levels of phospholipid metabolism-related genes were also obviously changed. Pearson correlation analysis indicated that the abundance of Aeromonas, Shewanella and Chitinibacter bacteria showed a negative correlation with most phospholipids, while Nevskia, Parvibacter and Lysobacter showed a positive correlation with most phospholipids. Based on these results, it is suggested that 1–4 μm PE-MPs could impact the microbiome and metabolism of larval zebrafish. All of these results indicated that the health risk of MPs cannot be ignored.
显示更多 [+] 显示较少 [-]A longitudinal study of rural Bangladeshi children with long-term arsenic and cadmium exposures and biomarkers of cardiometabolic diseases
2021
Akhtar, Evana | Roy, Anjan Kumar | Haq, Md Ahsanul | von Ehrenstein, Ondine S. | Ahmad, Sultan | Vahter, Marie | Ekström, Eva-Charlotte | Kippler, Maria | Wagatsuma, Yukiko | Raqib, Rubhana
There is growing interest in understanding the contribution of environmental toxicant exposure in early life to development of cardiometabolic diseases (CMD) in adulthood. We aimed to assess associations of early life exposure to arsenic and cadmium with biomarkers of CMD in children in rural Bangladesh. From a longitudinal mother-child cohort in Matlab, Bangladesh, we followed up 540 pairs. Exposure to arsenic (U–As) and cadmium (U–Cd) was assessed by concentrations in urine from mothers at gestational week 8 (GW8) and children at ages 4.5 and 9 years. Blood pressure and anthropometric indices were measured at 4.5 and 9 years. Metabolic markers (lipids, glucose, hemoglobin A1c, adipokines, estimated glomerular filtration rate (eGFR) were determined in plasma/blood of 9 years old children. In linear regression models, adjusted for child sex, age, height-for-age z score (HAZ), BMI-for-age z score (BAZ), socioeconomic status (SES) and maternal education, each doubling of maternal and early childhood U–Cd was associated with 0.73 and 0.82 mmHg increase in systolic blood pressure (SBP) respectively. Both early and concurrent childhood U–Cd was associated with diastolic (D)BP (β = 0.80 at 4.5 years; β = 0.75 at 9 years). Each doubling of U–Cd at 9 years was associated with decrements of 4.98 mg/dL of total cholesterol (TC), 1.75 mg/dL high-density lipoprotein (HDL), 3.85 mg/dL low-density lipoprotein (LDL), 0.43 mg/dL glucose and 4.29 units eGFR. Each doubling of maternal U–Cd was associated with a decrement of 1.23 mg/dL HDL. Both maternal and childhood U–As were associated with decrement in TC and HDL. Multiple comparisons were checked with family-wise error rate Bonferroni-type-approach. The negative associations of arsenic and cadmium with biomarkers of CMD in preadolescent children indicated influence of both metal(loid)s on fat and carbohydrate metabolism, while cadmium additionally influenced kidney function and BP. Thus, fewer outcomes were associated with U–As compared to U–Cd at preadolescence.
显示更多 [+] 显示较少 [-]Waterborne zinc bioaccumulation influences glucose metabolism in orange-spotted grouper embryos
2021
Zeng, Huiling | Zhang, Peifeng | Ye, Hengzhen | Ji, Yuxiang | Hogstrand, Christer | Green, Iain | Xiao, Juan | Fu, Qiongyao | Guo, Zhiqiang
Fish embryos, as an endogenous system, strictly regulate an energy metabolism that is particularly sensitive to environmental pressure. This study used orange-spotted grouper embryos and stable isotope ⁶⁷Zn to test the hypothesis that waterborne Zn exposure had a significant effect on energy metabolism in embryos. The fish embryos were exposed to a gradient level of waterborne ⁶⁷Zn, and then sampled to quantify ⁶⁷Zn bioaccumulation and mRNA expressions of key genes involved glucose metabolism. The results indicated that the bioaccumulated ⁶⁷Zn generally increased with increasing waterborne ⁶⁷Zn concentrations, while it tended to be saturated at waterborne ⁶⁷Zn > 0.7 mg L⁻¹. As we hypothesized, the expression of PK and PFK gene involved glycolysis pathway was significantly up-regulated under waterborne ⁶⁷Zn exposure >4 mg L⁻¹. Waterborne ⁶⁷Zn exposure >2 mg L⁻¹ significantly suppressed PCK and G6PC gene expression involved gluconeogenesis pathway, and also inhibited the AKT2, GSK-3beta and GLUT4 genes involved Akt signaling pathway. Our findings first characterized developmental stage-dependent Zn uptake and genotoxicity in fish embryos. We suggest fish embryos, as a small-scale modeling biosystem, have a large potential and wide applicability for determining cytotoxicity/genotoxicity of waterborne metal in aquatic ecosystem.
显示更多 [+] 显示较少 [-]Mediation effects of thyroid function in the associations between phthalate exposure and glucose metabolism in adults
2021
Huang, Han-Bin | Siao, Chi-Ying | Lo, Yuan-Ting C. | Shih, Shu-Fang | Lu, Chieh-Hua | Huang, Po-Chin
The mediating influence of thyroid function on the association of phthalate exposure with glucose metabolism, including insulin resistance, remains unclear. We explored the mediating influence of thyroid hormone levels on the phthalate exposure–insulin resistance association. This cross-sectional study of 217 Taiwanese adults assessed insulin resistance (Homeostatic Model Assessment for Insulin Resistance, HOMA-IR scores) and the levels of 11 urinary phthalate metabolites and 5 thyroid hormones. Multiple regression models were used to analyze the associations among serum thyroid hormone levels, urinary phthalate metabolite levels, and HOMA-IR scores. The mediation analysis assessed the influence of thyroid function on the phthalate exposure–HOMA-IR association. Our data indicated urinary mono-ethylhexyl phthalate (MEHP) levels was negatively associated with free thyroxine (T₄) (β = −0.018; 95% confidence interval [CI]: −0.031, −0.005) and positively associated with HOMA-IR scores (β = 0.051, 95% CI: 0.012, 0.090). The study also revealed urinary mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) levels was negatively associated with free T₄ (β = −0.036, 95% CI: −0.056, −0.017) and HOMA-IR (β = 0.070, 95% CI: 0.013, 0.126). Free T₄ and HOMA-IR had a negative association (β = −0.757, 95% CI: −1.122, −0.392). In the mediation analysis, free T₄ mediated 24% and 35% of the associations of urinary MEHP and MEOHP with HOMA-IR, respectively. Our findings revealed the mediating role of thyroid function in the phthalate exposure–glucose metabolism association in adults.
显示更多 [+] 显示较少 [-]Effects of the tributyltin on the blood parameters, immune responses and thyroid hormone system in zebrafish
2021
Li, Zhi-Hua | Li, Ping
Tributyltin (TBT) is a widely used organotin compound around the world and was frequently detected in surface waters, which would pose risk to aquatic organisms. However, the mechanisms of TBT-induced toxicity is not full clear. The present study investigated the effects of the tributyltin (TBT) on the blood parameters, immune responses and thyroid hormone system in zebrafish. Fish were exposed to sublethal concentrations of TBT (10 ng/L, 100 ng/L and 300 ng/L) for 6 weeks. The effects of long-term exposure to TBT on blood parameters (NH3, ammonia; GLU, glucose; TP, total proteins; CK, creatine kinase; ALT, alanine aminotransferase; AST, aspartate aminotransferase), immune responses (Lys, lysozyme; IgM, immunoglobulin M) and some indexes related thyroid hormone system (T3, 3,5,3′-triiodothyronine; T4, thyroxine) were measured in zebrafish, as well as the expression of genes related to immune responses and thyroid hormone system. Based on the results, the physiological-biochemical responses was significantly enhanced with an increase in TBT concentration, reflected by the abnormal blood indices, dysregulation of endocrine system and immunotoxicity in zebrafish under TBT stress. The present study greatly extends our understanding of adverse effects of TBT on aquatic organisms.
显示更多 [+] 显示较少 [-]