细化搜索
结果 1-10 的 161
Impact of chronic cadmium exposure at environmental dose on escape behaviour in sea bass (Dicentrarchus labrax L.; Teleostei, Moronidae). 全文
2008
Faucher, Karine | Fichet, Denis | Miramand, Pierre | Lagardère,
peer reviewed | The effect of chronic exposure to a low concentration (0.5 microg l(-1)) of cadmium ions was investigated on escape behaviour of sea bass, Dicentrarchus labrax, using video analysis. Observations were also performed on the microanatomy of lateral system neuromasts. When fish were exposed for 4h per day over 8 days to the cadmium ions, most of both types of neuromasts observed remained intact. However, some of them presented damaged sensory maculae. Whereas before cadmium exposure, fish responded positively to nearly all the lateral system stimulations, after exposure they decreased by about 10% their positive responses to stimulations. From the 15th day after the beginning of cadmium exposure, neuromasts presented progressively less damage, cadmium accumulation in gills and scales decreased significantly and fish escape behaviour had recovered. This study presents a new concept in ecotoxicology: using behavioural change to reveal the effects of pollution levels, scarcely detectable by currently used techniques (physiological responses).
显示更多 [+] 显示较少 [-]Polystyrene microbeads influence lipid storage distribution in C. elegans as revealed by coherent anti-Stokes Raman scattering (CARS) microscopy 全文
2022
Fueser, Hendrik | Pilger, Christian | Kong, Cihang | Huser, Thomas | Traunspurger, W. (Walter)
The exposure of Caenorhabditis elegans to polystyrene (PS) beads of a wide range of sizes impedes feeding, by reducing food consumption, and has been linked to inhibitory effects on the reproductive capacity of this nematode, as determined in standardized toxicity tests. Lipid storage provides energy for longevity, growth, and reproduction and may influence the organismal response to stress, including the food deprivation resulting from microplastics exposure. However, the effects of microplastics on energy storage have not been investigated in detail. In this study, C. elegans was exposed to ingestible sizes of PS beads in a standardized toxicity test (96 h) and in a multigeneration test (∼21 days), after which lipid storage was quantitatively analyzed in individual adults using coherent anti-Stokes Raman scattering (CARS) microscopy. The results showed that lipid storage distribution in C. elegans was altered when worms were exposed to microplastics in form of PS beads. For example, when exposed to 0.1-μm PS beads, the lipid droplet count was 93% higher, the droplets were up to 56% larger, and the area of the nematode body covered by lipids was up to 79% higher than in unexposed nematodes. The measured values tended to increase as PS bead sizes decreased. Cultivating the nematodes for 96 h under restricted food conditions in the absence of beads reproduced the altered lipid storage and suggested that it was triggered by food deprivation, including that induced by the dilutional effects of PS bead exposure. Our study demonstrates the utility of CARS microscopy to comprehensively image the smaller microplastics (<10 μm) ingested by nematodes and possibly other biota in investigations of the effects at the level of the individual organism.
显示更多 [+] 显示较少 [-]Using molecular detection for the diversity and occurrence of cyanobacteria and 2-methylisoborneol-producing cyanobacteria in an eutrophicated reservoir in northern China 全文
2021
Qiu, Pengfei | Chen, Youxin | Li, Chenjie | Huo, Da | Bi, Yonghong | Wang, Jianbo | Li, Yunchuang | Li, Renhui | Yu, Gongliang
Aquatic ecosystems and drinking water supply systems worldwide are increasingly affected by taste and odor episodes. In this study, molecular approaches including next-generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR) were used to study the diversity and dynamics of cyanobacteria and 2-methylisoborneol (2-MIB)-producing cyanobacteria in Yuqiao Reservoir, a eutrophicated drinking water reservoir in Tianjin city, northern China. NGS revealed that the entire cyanobacterial community consisted of 16 genera, with Planktothrix (28.8%), Pseudanabaena (18.4%), Cylindrospermosis (7.8%), and Microcystis (7.6%) being the dominant genera, while microscopic examination identified only eight cyanobacterial genera. NGS of the 2-MIB synthesis gene revealed that Pseudanabaena and Planktothricoides were the main 2-MIB producers, with Pseudanabaena being dominant. This finding demonstrated that NGS can identify 2-MIB producers quickly and accurately and it can thus play an important role in the practical monitoring of aquatic ecology. The qPCR test showed 2-MIB synthesis gene with 4.27 × 10⁶ copies/L to 2.24 × 10⁹copies/L occurring at the three sampling sites. The mic gene copy number increased before the 2-MIB concentration increased, indicating that forecasting role in dealing with the 2-MIB concentration by gene copy number. Predicting 2-MIB by qPCR in the field must be verified with additional studies. The combination of NGS and qPCR can be an even more comprehensive method to provide early warning information to managers of reservoirs and water utilities facing taste and odor incidents. This is the first amplicon NGS dataset based on 2-MIB gene to study the diversity and dynamics of 2-MIB-producing cyanobacteria.
显示更多 [+] 显示较少 [-]Varying modalities of perinatal exposure to a pesticide cocktail elicit neurological adaptations in mice and zebrafish 全文
2021
Forner-Piquer, Isabel | Klement, Wendy | Gangarossa, Giuseppe | Zub, Emma | de Bock, Frederic | Blaquiere, Marine | Maurice, Tangui | Audinat, Etienne | Faucherre, Adèle | Lasserre, Frederic | Ellero-Simatos, Sandrine | Gamet-Payrastre, Laurence | Jopling, Chris | Marchi, Nicola
Varying modalities of perinatal exposure to a pesticide cocktail elicit neurological adaptations in mice and zebrafish 全文
2021
Forner-Piquer, Isabel | Klement, Wendy | Gangarossa, Giuseppe | Zub, Emma | de Bock, Frederic | Blaquiere, Marine | Maurice, Tangui | Audinat, Etienne | Faucherre, Adèle | Lasserre, Frederic | Ellero-Simatos, Sandrine | Gamet-Payrastre, Laurence | Jopling, Chris | Marchi, Nicola
Epidemiological indications connect maternal and developmental presence or exposure to pesticides with an increased risk for a spectrum of neurological trajectories. To provide pre-clinical data in support of this hypothesis, we used two distinct experimental models. First, female and male mice were fed immediately prior to mating, and the resulting pregnant dams were continously fed during gestation and lactation periods using chow pellets containing a cocktail of six pesticides at tolerable daily intake levels. Male and female offspring were then tracked for behavioral and in vivo electrophysiological adaptations. Second, a zebrafish model allowed us to screen toxicity and motor-behavior outcomes specifically associated with the developmental exposure to a low-to-high concentration range of the cocktail and of each individual pesticide. Here, we report anxiety-like behavior in aging male mice maternally exposed to the cocktail, as compared to age and gender matched sham animals. In parallel, in vivo electrocorticography revealed a decrease in gamma (40–80 Hz) and an increase of theta (6–9 Hz) waves, delineating a long-term, age-dependent, neuronal slowing. Neurological changes were not accompanied by brain structural malformations. Next, by using zebrafish larvae, we showed an increase of all motor-behavioral parameters resulting from the developmental exposure to 10 μg/L of pesticide cocktail, an outcome that was not associated with midbrain structural or neurovascular modifications as assessed by in vivo 2-photon microscopy. When screening each pesticide, chlorpyrifos elicited modifications of swimming parameters at 0.1 μg/L, while other components provoked changes from 0.5 μg/L. Ziram was the single most toxic component inducing developmental malformations and mortality at 10 μg/L. Although we have employed non-equivalent modalities and timing of exposure in two dissimilar experimental models, these outcomes indicate that presence of a pesticide cocktail during perinatal periods represents an element promoting behavioral and neurophysiological modifications. The study limitations and the possible pertinence of our findings to ecotoxicology and public health are critically discussed.
显示更多 [+] 显示较少 [-]Varying modalities of perinatal exposure to a pesticide cocktail elicit neurological adaptations in mice and zebrafish 全文
2021
Forner-Piquer, Isabel | Klement, Wendy | Gangarossa, Giuseppe | Zub, Emma | de Bock, Frédéric | Blaquière, Marine | Maurice, Tangui | Audinat, Etienne | Faucherre, Adèle | Lasserre, Frédéric | Ellero-Simatos, Sandrine | Gamet-Payrastre, Laurence | Jopling, Chris | Marchi, Nicola | Institut de Génomique Fonctionnelle (IGF) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) | Unité de Biologie Fonctionnelle et Adaptative (BFA (UMR_8251 / U1133)) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) | Mécanismes moléculaires dans les démences neurodégénératives (MMDN) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM) | Toxicologie Intégrative & Métabolisme (ToxAlim-TIM) ; ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This work was supported by ANSES Epidemicmac, MUSEiSite University of Montpellier, FRC and France Parkinson, ANR-Hepatobrain, ANR-Glyflore. | ANR-17-CE34-0005,HepatoBrain,Mélange de pesticides et axe foie-cerveau : implication des récepteurs aux xénobiotiques(2017)
International audience | Epidemiological indications connect maternal and developmental presence or exposure to pesticides with an increased risk for a spectrum of neurological trajectories. To provide pre-clinical data in support of this hypothesis, we used two distinct experimental models. First, female and male mice were fed immediately prior to mating, and the resulting pregnant dams were continously fed during gestation and lactation periods using chow pellets containing a cocktail of six pesticides at tolerable daily intake levels. Male and female offspring were then tracked for behavioral and in vivo electrophysiological adaptations. Second, a zebrafish model allowed us to screen toxicity and motor-behavior outcomes specifically associated with the developmental exposure to a low-to-high concentration range of the cocktail and of each individual pesticide. Here, we report anxiety-like behavior in aging male mice maternally exposed to the cocktail, as compared to age and gender matched sham animals. In parallel, in vivo electrocorticography revealed a decrease in gamma (40-80 Hz) and an increase of theta (6-9 Hz) waves, delineating a long-term, age-dependent, neuronal slowing. Neurological changes were not accompanied by brain structural malformations. Next, by using zebrafish larvae, we showed an increase of all motor-behavioral parameters resulting from the developmental exposure to 10 μg/L of pesticide cocktail, an outcome that was not associated with midbrain structural or neurovascular modifications as assessed by in vivo 2-photon microscopy. When screening each pesticide, chlorpyrifos elicited modifications of swimming parameters at 0.1 μg/L, while other components provoked changes from 0.5 μg/L. Ziram was the single most toxic component inducing developmental malformations and mortality at 10 μg/L. Although we have employed non-equivalent modalities and timing of exposure in two dissimilar experimental models, these outcomes indicate that presence of a pesticide cocktail during perinatal periods represents an element promoting behavioral and neurophysiological modifications. The study limitations and the possible pertinence of our findings to ecotoxicology and public health are critically discussed.
显示更多 [+] 显示较少 [-]Abundant sediment organic matter potentially facilitates chemical iron reduction and surface water blackness in a Chinese deep lake 全文
2021
Li, Biao | Feng, Muhua | Chen, Xiangchao | Wang, Yarui | Shen, Yue | Wu, Qinglong L.
Black bloom has become an increasingly severe environmental and ecological problem in lots of lakes. Ferrous monosulfide (FeS), which is closely related to chemical iron reduction (CIR), is considered the major cause for black water in shallow lakes, but few studies focus on the effect of organic matters (OM) content on iron and sulfate reduction and its contribution to the black bloom in deep lakes. Here, in Lake Fuxian, a Chinese deep lake which has also suffered from black bloom, FeS was identified responsible for the surface water blackness by using multiple microscopy and element analyses. Dissolved oxygen (DO) penetrated 1.6–4.2 mm in all sediment sites, further indicating FeS formed in the sediments instead of the permanently oxic water column. Geochemical characteristics revealed by diffusive gradients in thin films (DGT) showed that DGT-Fe²⁺ concentration was 57.6–1919.4 times higher than the DGT-S²⁻ concentration and both were positively correlated with DGT-PO₄³⁻. Combining DGT profiles and anaerobic OM remineralization rate according to bag incubation, iron reduction is more effective than sulfate reduction although the two processes coexisted. Moreover, correlation of DGT-Fe²⁺ and DGT-PO₄³⁻ was better than that of DGT-PO₄³⁻ and DGT-S²⁻ at OM-depleted sites but opposite at OM-rich sites. In addition, total organic carbon (TOC) was significantly positively related to acid volatile sulfide (AVS). We therefore conclude that abundant OM potentially exacerbate chemical iron reduction and further lead to surface water blackness. Our study revealed the mechanisms behind the black bloom and gives credence to the management strategy of reducing OM loading to protect water quality in deep lakes.
显示更多 [+] 显示较少 [-]A preliminary analysis of microplastics in edible versus non-edible tissues from seafood samples 全文
2020
Akoueson, Fleurine | Sheldon, Lisa M. | Danopoulos, Evangelos | Morris, Steve | Hotten, Jessica | Chapman, Emma | Li, Jiana | Rotchell, Jeanette M.
Plastics have been widely reported to be present in the environment yet there are still many questions regarding the extent of this and the impacts these may have on both the environment and human health. The purpose of this investigation is to determine levels of micro and mesoplastic (MP), in the 1–5000 μm range, in commercially important species of finfish and shellfish. Additionally, to determine and compare the relative MP levels in edible versus non-edible tissues, and consider the wider implications in terms of human health concerns with a preliminary risk identification approach. For several fish species, samples taken from typically non-edible (gills, digestive system) and edible (muscle) flesh, and were analysed separately. Scallops, where all tissues are edible, were analysed whole. Significant differences were observed in the number of particles isolated from the finfish gills and digestive tissues relative to the control samples, but not in the edible flesh. For scallops, the abundance of particles in the Scottish samples did not vary significantly from the control, while the Patagonian scallops displayed significantly higher numbers of MPs. Characterisation of MPs by FTIR microscopy found that 16–60% (depending on species) were polyethylene terephthalate (PET) and polyethylene (PE) in origin. The risk identification results validate MPs as an emerging risk in the food chain and establish seafood as a vector for the exposure and uptake of MPs through the ingestion route for humans. Levels of MPs in seafood, and a direct link to the human food chain, suggests that their quantification be included as one food safety measure.
显示更多 [+] 显示较少 [-]Stimulated Raman microspectroscopy as a new method to classify microfibers from environmental samples 全文
2020
Laptenok, Sergey P. | Martin, Cecilia | Genchi, Luca | Duarte, Carlos M. | Liberale, Carlo
Microfibers are reported as the most abundant microparticle type in the environment. Their small size and light weight allow easy and fast distribution, but also make it challenging to determine their chemical composition. Vibrational microspectroscopy methods as infrared and spontaneous Raman microscopy have been widely used for the identification of environmental microparticles. However, only few studies report on the identification of microfibers, mainly due to difficulties caused by their small diameter. Here we present the use of Stimulated Raman Scattering (SRS) microscopy for fast and reliable classification of microfibers from environmental samples. SRS microscopy features high sensitivity and has the potential to be faster than other vibrational microspectroscopy methods. As a proof of principle, we analyzed fibers extracted from the fish gastrointestinal (GIT) tract, deep-sea and coastal sediments, surface seawater and drinking water. Challenges were faced while measuring fibers from the fish GIT, due to the acidic degradation they undergo. However, the main vibrational peaks were still recognizable and sufficient to determine the natural or synthetic origin of the fibers. Notably, our results are in accordance to other recent studies showing that the majority of the analyzed environmental fibers has a natural origin. Our findings suggest that advanced spectroscopic methods must be used for estimation of the plastic fibers concentration in the environment.
显示更多 [+] 显示较少 [-]Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar 全文
2019
Wei, Jing | Du, Zhen | Yuan, Guodong | Liu, Ying | Bi, Dongxue | Xiao, Liang | Lu, Jian | Theng, B. K. G. | Wang, Hailong | Zhang, Lijuan | Zhang, Xiangzhi
The capacity of biochar to take up heavy metals from contaminated soil and water is influenced by the pyrolysis temperature. We have prepared three biochar samples from Jerusalem artichoke stalks (JAS) by pyrolysis at 300, 500 and 700 °C, denoted as JAS300, JAS500, and JAS700, respectively. A variety of synchrotron-based techniques were used to assess the effect of pyrolysis temperature on the molecular properties and copper (Cu) sorption capacity of the samples. The content of oxygen-containing functional groups in the biochar samples decreased, while that of aromatic structures and alkaline mineral components increased, with a rise in pyrolysis temperature. Scanning transmission X-ray microscopy indicated that sorbed Cu(II) was partially reduced to Cu(I), but this process was more evident with JAS300 and JAS700 than with JAS500. Carbon K-edge X-ray absorption near edge structure spectroscopy indicated that Cu(II) cations were sorbed to biochar via complexation and Cu-π bonding. With rising pyrolysis temperature, Cu(II)-complexation weakened while Cu-π bonding was enhanced. In addition, the relatively high ash content and pH of JAS500 and JAS700 facilitated Cu precipitation and the formation of langite on the surface of biochar. The results of this investigation will aid the conversion of halophyte waste to useable biochar for the effective remediation of Cu-contaminated soil and water.
显示更多 [+] 显示较少 [-]Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles 全文
2017
Formentini, Thiago Augusto | Legros, Samuel | Fernandes, Cristovão Vicente Scapulatempo | Pinheiro, Adilson | Le Bars, Maureen | Levard, Clément | Mallmann, Fábio Joel Kochem | da Veiga, Milton | Doelsch, Emmanuel
Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles 全文
2017
Formentini, Thiago Augusto | Legros, Samuel | Fernandes, Cristovão Vicente Scapulatempo | Pinheiro, Adilson | Le Bars, Maureen | Levard, Clément | Mallmann, Fábio Joel Kochem | da Veiga, Milton | Doelsch, Emmanuel
Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-μm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments.
显示更多 [+] 显示较少 [-]Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles 全文
2017
Formentini, Thiago Augusto | Legros, Samuel | Fernandes, Cristovão Vicente Scapulatempo | Pinheiro, Adilson | Bars, Maureen Le | Levard, Clément | Mallmann, Fábio Joel Kochem | Veiga, Milton, Da | Doelsch, Emmanuel | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Recyclage et risque (UPR Recyclage et risque) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
International audience | Abstract Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and \XAS\ analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-μm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and \XAS\ observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments.
显示更多 [+] 显示较少 [-]Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles 全文
2017
Formentini T.A. | Legros S. | Fernandes C.V.S. | Pinheiro A. | Le Bars M. | Levard C. | Mallmann F.J.K. | Da Veiga M. | Doelsch E.
Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-?m diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments. (Résumé d'auteur)
显示更多 [+] 显示较少 [-]Role of bovine serum albumin and humic acid in the interaction between SiO2 nanoparticles and model cell membranes 全文
2016
Wei, Xiaoran | Qu, Xiaolei | Ding, Lei | Hu, Jingtian | Jiang, Wei
Silica nanoparticles (SiO2 NPs) can cause health hazard after their release into the environment. Adsorption of natural organic matter and biomolecules on SiO2 NPs alters their surface properties and cytotoxicity. In this study, SiO2 NPs were treated by bovine serum albumin (BSA) and humic acid (HA) to study their effects on the integrity and fluidity of model cell membranes. Giant and small unilamellar vesicles (GUVs and SUVs) were prepared as model cell membranes in order to avoid the interference of cellular activities. The microscopic observation revealed that the BSA/HA treated (BSA-/HA-) SiO2 NPs took more time to disrupt membrane than untreated-SiO2 NPs, because BSA/HA adsorption covered the surface SiOH/SiO- groups and weakened the interaction between NPs and phospholipids. The deposition of SiO2 NPs on membrane was monitored by a quartz crystal microbalance with dissipation (QCM-D). Untreated- and HA-SiO2 NPs quickly disrupted the SUV layer on QCM-D sensor; BSA-SiO2 NPs attached on the membranes but only caused slow vesicle disruption. Untreated-, BSA- and HA-SiO2 NPs all caused the gelation of the positively-charged membrane, which was evaluated by the generalized polarity values. HA-SiO2 NPs caused most serious gelation, and BSA-SiO2 NPs caused the least. Our results demonstrate that the protein adsorption on SiO2 NPs decreases the NP-induced membrane damage.
显示更多 [+] 显示较少 [-]