细化搜索
结果 1-10 的 200
Occurrence and assessment of perfluoroalkyl acids (PFAAs) in commonly consumed seafood from the coastal area of Bangladesh 全文
2017
Habibullah-Al-Mamun, Md. | Ahmed, Md. K. | Raknuzzaman, M. | Islam, Md. S. | Ali, M.F. | Tokumura, M. | Masunaga, S.
This study reports the first evidence of the occurrence of perfluoroalkyl acids (PFAAs) in commonly consumed seafood from the coastal area of Bangladesh. Fifteen target PFAAs in 48 seafood samples (5 finfish and 2 shellfish species) were measured by HPLC-MS/MS. The results were comparable with other studies worldwide, particularly from China, Spain, Sweden, and USA. The majority of monitored PFAAs did not show clear seasonal variation. However, seafood from the southeast area (Coxs Bazar and Chittagong) showed relatively higher levels of PFAAs. Moreover, the dietary exposure assessment revealed that the daily intakes of PFAAs via seafood consumption were far less than the health-based guidelines, indicating low health risk for the Bangladeshi coastal residents."
显示更多 [+] 显示较少 [-]The role of physico-chemical interactions in the seasonality of toxic dinoflagellate cyst assemblages: The case of the NW Patagonian fjords system 全文
2022
Rodríguez–Villegas, Camilo | Díaz, Patricio A. | Salgado, Pablo | Tomasetti, Stephen J. | Díaz, Manuel | Marín, Sandra L. | Baldrich, Ángela M. | Niklitschek, Edwin | Pino, Loreto | Matamala, Thamara | Espinoza, Katherine | Figueroa, Rosa I.
The role of physico-chemical interactions in the seasonality of toxic dinoflagellate cyst assemblages: The case of the NW Patagonian fjords system 全文
2022
Rodríguez–Villegas, Camilo | Díaz, Patricio A. | Salgado, Pablo | Tomasetti, Stephen J. | Díaz, Manuel | Marín, Sandra L. | Baldrich, Ángela M. | Niklitschek, Edwin | Pino, Loreto | Matamala, Thamara | Espinoza, Katherine | Figueroa, Rosa I.
Harmful algal blooms (HABs) are recurrent in the NW Patagonia fjords system and their frequency has increased over the last few decades. Outbreaks of HAB species such as Alexandrium catenella, a causal agent of paralytic shellfish poisoning, and Protoceratium reticulatum, a yessotoxins producer, have raised considerable concern due to their adverse socioeconomic consequences. Monitoring programs have mainly focused on their planktonic stages, but since these species produce benthic resting cysts, the factors influencing cyst distributions are increasingly gaining recognition as potentially important to HAB recurrence in some regions. Still, a holistic understanding of the physico-chemical conditions influencing cyst distribution in this region is lacking, especially as it relates to seasonal changes in drivers of cyst distributions, as the characteristics that favor cyst preservation in the sediment may change through the seasons. In this study, we analyzed the physico–chemical properties of the sediment (temperature, pH, redox potential) and measured the bottom dissolved oxygen levels in a “hotspot” area of southern Chile, sampling during the spring and summer as well as the fall and winter, to determine the role these factors may play as modulators of dinoflagellate cyst distribution, and specifically for the cysts of A. catenella and P. reticulatum. A permutational analysis of variance (PERMANOVA) showed the significant effect of sediment redox conditions in explaining the differences in the cyst assemblages between spring-summer and fall-winter periods (seasonality). In a generalized linear model (GLM), sediment redox potential and pH were associated with the highest abundances of A. catenella resting cysts in the spring-summer, however it was sediment temperature that most explained the distribution of A. catenella in the fall-winter. For P. reticulatum, only spring-summer sediment redox potential and temperature explained the variation in cyst abundances. The implications of environmental (physico-chemical) seasonality for the resting cysts dynamics of both species are discussed.
显示更多 [+] 显示较少 [-]The role of physico-chemical interactions in the seasonality of toxic dinoflagellate cyst assemblages: The case of the NW Patagonian fjords system
Microplastic contamination in seafood from Dongshan Bay in southeastern China and its health risk implication for human consumption 全文
2022
Pan, Zhong | Liu, Qianlong | Xu, Jing | Li, Weiwen | Lin, Hui
Microplastic (MP) pollution has been a considerable concern due to its ubiquity in the environment and its potential to harm human health. Unfortunately, the exact levels of MP in various species of seafood species have not been established. It is also unclear whether or not consuming seafood contaminated with MPs directly jeopardizes human health. Here, eight popular species of seafood in Dongshan Bay, China were investigated to determine the presence of MP pollution and its implications on human health. The abundance, color, size, shape, type, surface morphology, danger of the MPs extracted from the seafood were analyzed. Results showed that the average MP abundance in the shellfish and fish was 1.88 ± 1.44 and 1.98 ± 1.98 items individual⁻¹, respectively. The heavy presence of fibers may be attributed to the shellfish and fish's feeding behaviors as well as their habitat and environment. The sizes of MPs found were below 1.0 mm. The main types of MP found in the shellfish were PES and PET, whereas the main types found in the fish were PS and PES. Risk assessment suggested that MPs in the shellfish (risk Level V) posed a greater and more direct threat to human health if the shellfish is eaten whole. The MPs in the gastrointestinal tracts (GITs) of fish (risk Level IV) have a relatively limited effect on human health since GITs are seldom consumed by humans unless the fish is heavily processed (canned or dried). MPs-induced health risk is predicted using a technique called molecular docking. The results of this study not only establish levels of MP pollution in popular seafood species but also help understand the implications of consuming MP-contaminated seafood on human health.
显示更多 [+] 显示较少 [-]The influence of nutrient loading on methylmercury availability in Long Island estuaries 全文
2021
Estuaries provide critical habitat for food webs supporting fish and shellfish consumed by humans, but estuarine ecosystem health has been threatened by increases in nitrogen loading as well as inputs of the neurotoxin, mercury (Hg), which biomagnifies in food webs and poses risk to humans and wildlife. In this study, the effects of nutrient loading on the fate of Hg in shallow coastal estuaries were examined to evaluate if their interaction enhances or reduces Hg bioavailability in sediments, the water column, and concentrations in lower trophic level fish (Fundulus heteroclitus and Menidia menidia). Multiple sites were sampled within two human impacted coastal lagoons, Great South Bay (GSB) and Jamaica Bay (JB), on the southern coast of Long Island, NY, United States of America (U.S.A.). Carbon (C), nitrogen (N), sulfur (S), Hg, and methylmercury (MeHg) were measured in surface sediments and the water column, and total Hg (THg) was measured in two species of forage fish. Minimal differences were found in dissolved and particulate Hg, dissolved organic carbon (DOC), and salinity between the two bays. Across lagoons, concentrations of chlorophyll-a were correlated with total suspended solids (TSS), and water column THg and MeHg was largely associated with the particulate fraction. Methylmercury concentrations in particulates decreased with increasing TSS and chlorophyll-a, evidence of biomass dilution of MeHg with increasing productivity at the base of the food chain. Water column Hg was associated with THg concentrations in Atlantic silversides, while mummichog THg concentrations were related to sediment concentrations, reflecting their different feeding strategies. Finally, higher nutrient loading (lower C:N in sediments) while related to lower particulate concentrations coincided with higher bioaccumulation factors (BAF) for Hg in both fish species. Thus, in shallow coastal lagoons, increased nutrient loading resulted in decreased Hg concentrations at the base of the food web but resulted in greater bioaccumulation of Hg to fish relative to its availability in algal food.
显示更多 [+] 显示较少 [-]The biological plastic pump: Evidence from a local case study using blue mussel and infaunal benthic communities 全文
2021
Van Colen, Carl | Moereels, Lieke | Vanhove, Brecht | Vrielinck, Henk | Moens, Tom
The distinct spatial variability in microplastic concentrations between marine regions and habitats calls for a better understanding about the transport pathways of this omnipresent pollutant in the marine environment. This study provides empirical evidence that a sessile filter feeder, the Blue mussel M. edulis, accelerates microplastic deposition by aggregating them into sinking particulate faeces and pseudofaeces. After settling to the seafloor, the bioturbation of benthic fauna quickly buries these microplastics. Collectively, these results suggest that if such biologically-mediated benthic-pelagic coupling would be integrated into hydrodynamic transport models, the spatial variability and source-sink dynamics of microplastics would be better understood. It is proposed that microplastic pollution is monitored through sampling that takes into account faeces and pseudofaeces underneath filter feeders. The implications of this detrital pathway for microplastic transfer to the seafloor, and the role of shellfish mariculture in this process, are discussed. Studies that consider filter feeders and benthic communities from other regions, and during different seasons, are needed to validate the proposed biological pump mechanism across space and time.
显示更多 [+] 显示较少 [-]Rapid uptake and slow depuration: Health risks following cyanotoxin accumulation in mussels? 全文
2021
Camacho-Muñoz, Dolores | Waack, Julia | Turner, Andrew D. | Lewis, Adam M. | Lawton, Linda A. | Edwards, Christine
Freshwater cyanobacteria produce highly toxic secondary metabolites, which can be transported downstream by rivers and waterways into the sea. Estuarine and coastal aquaculture sites exposed to toxic cyanobacteria raise concerns that shellfish may accumulate and transfer cyanotoxins in the food web. This study aims to describe the competitive pattern of uptake and depuration of a wide range of microcystins (MC-LR, MC-LF, MC-LW, MC-LY, [Asp3]-MC-LR/[Dha7]-MC-LR, MC-HilR) and nodularins (NOD cyclic and linear) within the common blue mussel Mytilus edulis exposed to a combined culture of Microcystis aeruginosa and Nodularia spumigena into the coastal environment.Different distribution profiles of MCs/NODs in the experimental system were observed. The majority of MCs/NODs were present intracellularly which is representative of healthy cyanobacterial cultures, with MC-LR and NOD the most abundant analogues. Higher removal rate was observed for NOD (≈96%) compared to MCs (≈50%) from the water phase. Accumulation of toxins in M. edulis was fast, reaching up to 3.4 μg/g shellfish tissue four days after the end of the 3-days exposure period, with NOD (1.72 μg/g) and MC-LR (0.74 μg/g) as the dominant toxins, followed by MC-LF (0.35 μg/g) and MC-LW (0.31 μg/g). Following the end of the exposure period depuration was incomplete after 27 days (0.49 μg/g of MCs/NODs). MCs/NODs were also present in faecal material and extrapallial fluid after 24 h of exposure with MCs the main contributors to the total cyanotoxin load in faecal material and NOD in the extrapallial fluid. Maximum concentration of MCs/NODs accumulated in a typical portion of mussels (20 mussels, ≈4 g each) was beyond greater the acute, seasonal and lifetime tolerable daily intake. Even after 27 days of depuration, consuming mussels harvested during even short term harmful algae blooms in close proximity to shellfish beds might carry a high health risk, highlighting the need for testing.
显示更多 [+] 显示较少 [-]A preliminary analysis of microplastics in edible versus non-edible tissues from seafood samples 全文
2020
Akoueson, Fleurine | Sheldon, Lisa M. | Danopoulos, Evangelos | Morris, Steve | Hotten, Jessica | Chapman, Emma | Li, Jiana | Rotchell, Jeanette M.
Plastics have been widely reported to be present in the environment yet there are still many questions regarding the extent of this and the impacts these may have on both the environment and human health. The purpose of this investigation is to determine levels of micro and mesoplastic (MP), in the 1–5000 μm range, in commercially important species of finfish and shellfish. Additionally, to determine and compare the relative MP levels in edible versus non-edible tissues, and consider the wider implications in terms of human health concerns with a preliminary risk identification approach. For several fish species, samples taken from typically non-edible (gills, digestive system) and edible (muscle) flesh, and were analysed separately. Scallops, where all tissues are edible, were analysed whole. Significant differences were observed in the number of particles isolated from the finfish gills and digestive tissues relative to the control samples, but not in the edible flesh. For scallops, the abundance of particles in the Scottish samples did not vary significantly from the control, while the Patagonian scallops displayed significantly higher numbers of MPs. Characterisation of MPs by FTIR microscopy found that 16–60% (depending on species) were polyethylene terephthalate (PET) and polyethylene (PE) in origin. The risk identification results validate MPs as an emerging risk in the food chain and establish seafood as a vector for the exposure and uptake of MPs through the ingestion route for humans. Levels of MPs in seafood, and a direct link to the human food chain, suggests that their quantification be included as one food safety measure.
显示更多 [+] 显示较少 [-]Cultures of Dinophysis sacculus, D. acuminata and pectenotoxin 2 affect gametes and fertilization success of the Pacific oyster, Crassostrea gigas 全文
2020
Gaillard, Sylvain | Le Goïc, Nelly | Malo, Florent | Boulais, Myrina | Fabioux, Caroline | Zaccagnini, Lucas | Carpentier, Liliane | Sibat, Manoella | Réveillon, Damien | Séchet, Véronique | Hess, Philipp | Hégaret, Hélène
Cultures of Dinophysis sacculus, D. acuminata and pectenotoxin 2 affect gametes and fertilization success of the Pacific oyster, Crassostrea gigas 全文
2020
Gaillard, Sylvain | Le Goïc, Nelly | Malo, Florent | Boulais, Myrina | Fabioux, Caroline | Zaccagnini, Lucas | Carpentier, Liliane | Sibat, Manoella | Réveillon, Damien | Séchet, Véronique | Hess, Philipp | Hégaret, Hélène
Harmful algal blooms (HABs) of toxic species of the dinoflagellate genus Dinophysis are a threat to human health as they are mainly responsible for diarrheic shellfish poisoning (DSP) in the consumers of contaminated shellfish. Such contamination leads to shellfish farm closures causing major economic and social issues. The direct effects of numerous HAB species have been demonstrated on adult bivalves, whereas the effects on critical early life stages remain relatively unexplored. The present study aimed to determine the in vitro effects of either cultivated strains of D. sacculus and D. acuminata isolated from France or their associated toxins (i.e. okadaic acid (OA) and pectenotoxin 2 (PTX2)) on the quality of the gametes of the Pacific oyster Crassostrea gigas. This was performed by assessing the ROS production and viability of the gametes using flow cytometry, and fertilization success using microscopic counts. Oocytes were more affected than spermatozoa and their mortality and ROS production increased in the presence of D. sacculus and PTX2, respectively. A decrease in fertilization success was observed at concentrations as low as 0.5 cell mL⁻¹ of Dinophysis spp. and 5 nM of PTX2, whereas no effect of OA could be observed. The effect on fertilization success was higher when both gamete types were concomitantly exposed compared to separate exposures, suggesting a synergistic effect. Our results also suggest that the effects could be due to cell-to-cell contact. These results highlight a potential effect of Dinophysis spp. and PTX2 on reproduction and recruitment of the Pacific oyster.
显示更多 [+] 显示较少 [-]Cultures of Dinophysis sacculus, D. acuminata and pectenotoxin 2 affect gametes and fertilization success of the Pacific oyster, Crassostrea gigas 全文
2020
Gaillard, Sylvain | Le Goïc, Nelly | Malo, Florent | Boulais, Myrina | Fabioux, Caroline | Zaccagnini, Lucas | Carpentier, Liliane | Sibat, Manoella | Réveillon, Damien | Séchet, Veronique | Hess, Philipp | Hégaret, Helene
Harmful algal blooms (HABs) of toxic species of the dinoflagellate genus Dinophysis are a threat to human health as they are mainly responsible for diarrheic shellfish poisoning (DSP) in the consumers of contaminated shellfish. Such contamination leads to shellfish farm closures causing major economic and social issues. The direct effects of numerous HAB species have been demonstrated on adult bivalves, whereas the effects on critical early life stages remain relatively unexplored. The present study aimed to determine the in vitro effects of either cultivated strains of D. sacculus and D. acuminata isolated from France or their associated toxins (i.e. okadaic acid (OA) and pectenotoxin 2 (PTX2)) on the quality of the gametes of the Pacific oyster Crassostrea gigas. This was performed by assessing the ROS production and viability of the gametes using flow cytometry, and fertilization success using microscopic counts. Oocytes were more affected than spermatozoa and their mortality and ROS production increased in the presence of D. sacculus and PTX2, respectively. A decrease in fertilization success was observed at concentrations as low as 0.5 cell mL−1 of Dinophysis spp. and 5 nM of PTX2, whereas no effect of OA could be observed. The effect on fertilization success was higher when both gamete types were concomitantly exposed compared to separate exposures, suggesting a synergistic effect. Our results also suggest that the effects could be due to cell-to-cell contact. These results highlight a potential effect of Dinophysis spp. and PTX2 on reproduction and recruitment of the Pacific oyster.
显示更多 [+] 显示较少 [-]Parabens and triclosan in shellfish from Shenzhen coastal waters: Bioindication of pollution and human health risks 全文
2019
Lu, Shaoyou | Wang, Ning | Ma, Shengtao | Hu, Xing | Kang, Li | Yu, Yingxin
This work aimed to determine the concentrations of parabens and triclosan (TCS) in shellfish from coastal waters of Shenzhen, South China. A method of isotope dilution with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to determine TCS and five paraben analogues, including methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP), and benzyl paraben (BeP), in 186 shellfish samples covering eight species. Concentrations of parabens and TCS were 0.13–25.5 ng/g wet weight (ww) and <LOQ–6.51 ng/g ww, respectively, indicating their ubiquitous contamination in Shenzhen coastal waters. MeP was the most predominant paraben, followed by EtP and PrP. These three analogues accounted for more than 95% of the total concentrations of parabens. The “high” estimated daily intakes of parabens and TCS with the 95th percentage concentrations were estimated to be 2.15–26.1 and 0.41–10.3 ng/kg bw/day, respectively, much lower than the acceptable dietary intakes of parabens (1 × 10⁷ ng/kg bw/day) and TCS (200 ng/kg bw/day), indicating no significant human health risks from shellfish consumption in the studied region. To our knowledge, this is the first report on the occurrences of parabens and TCS in shellfish products from Shenzhen coastal waters.
显示更多 [+] 显示较少 [-]The level of mercury contamination in mariculture sites at the estuary of Pearl River and the potential health risk 全文
2016
Tao, H.C. | Zhao, K.Y. | Ding, W.Y. | Li, J.B. | Liang, P. | Wu, S.C. | Wong, M.H.
In the present study, the Hg contamination in mariculture sites located at the estuary of Pearl River was to investigate with an attempt to analyse associated health risks of dietary exposure to both total mercury (THg) and methyl mercury (MeHg) in cultured fish and shellfish. The highest total mercury concentration (7.037 ± 0.556 ng L−1) of seawater was observed at Zhuhai Estuary. The Hg concentrations of sediment in Guishan Island were significantly higher (p < 0.05) than in Daya Bay (away from the Pearl River). Besides, the both THg and MeHg levels in sediment at mariculture sites were higher (p < 0.05) than corresponding reference sites. It was attributed to the fact that mariculture activities increased Hg loading and promoted MeHg production. The vertical distribution of Hg in sediment cores demonstrated that mercury methylation mostly occurred at the sediment-water interface. Results of health risk assessments showed that fish consumption would impose a higher risk to children but less to adults, while shellfish produced in the studied area was safe for consumption.
显示更多 [+] 显示较少 [-]