细化搜索
结果 1-10 的 201
Occurrence and assessment of perfluoroalkyl acids (PFAAs) in commonly consumed seafood from the coastal area of Bangladesh
2017
Habibullah-Al-Mamun, Md. | Ahmed, Md. K. | Raknuzzaman, M. | Islam, Md. S. | Ali, M.F. | Tokumura, M. | Masunaga, S.
This study reports the first evidence of the occurrence of perfluoroalkyl acids (PFAAs) in commonly consumed seafood from the coastal area of Bangladesh. Fifteen target PFAAs in 48 seafood samples (5 finfish and 2 shellfish species) were measured by HPLC-MS/MS. The results were comparable with other studies worldwide, particularly from China, Spain, Sweden, and USA. The majority of monitored PFAAs did not show clear seasonal variation. However, seafood from the southeast area (Coxs Bazar and Chittagong) showed relatively higher levels of PFAAs. Moreover, the dietary exposure assessment revealed that the daily intakes of PFAAs via seafood consumption were far less than the health-based guidelines, indicating low health risk for the Bangladeshi coastal residents."
显示更多 [+] 显示较少 [-]Presence of nano-sized mercury-containing particles in seafoods, and an estimate of dietary exposure
2022
Suzuki, Yoshinari | Kondo, Midori | Akiyama, Hiroshi | Ogra, Yasumitsu
The toxicity of nano-sized particles of mercury (NP–Hg), which are thought to be generated during the detoxification of methyl mercury (MeHg), may differ from that of MeHg, elemental Hg (Hg⁰), and inorganic Hg (I–Hg). From a human health perspective, it is important to evaluate the presence of NP-Hg in seafoods. We investigated the in vivo formation of NP-Hg in fish and shellfish, which are the main sources of Hg exposure in humans. NP-Hg was measured in 90 fish samples with single-particle inductively coupled plasma mass spectrometry (spICP-MS) after enzyme degradation with pancreatin and lipase. In addition to NP-Hg, total Hg (T-Hg), MeHg, and selenium (Se) concentrations were evaluated. Transient Hg signals were detected as nanoparticles from almost all samples by using spICP-MS. Higher particle number concentrations (CPN) were observed in the tuna–swordfish group than in the shellfish group (17.7 × 10⁷ vs. 1.2 × 10⁶ particles/g, respectively). Although the CPN and maximum particle mass increased significantly with increasing T-Hg concentration, the increase in CPN was greater than those in maximum particle mass. Assuming that the NP-Hg detected was HgSe (tiemannite) and spherical based on previous reports, the maximum particle diameter was estimated to be 89 nm. The mean dietary exposures to NP-Hg, T-Hg, and MeHg were estimated to be 0.067, 5.75, and 5.32 μg/person per day, respectively. Generation of NP-Hg was inferred to be widespread in marine animals, with a preferential increase in the number of particles rather than an increase in particle size. The mean dietary exposure to NP-Hg in Japanese people was estimated to be 1.2 ng/kg body weight (BW) per day. Compared to PTWI of 4 μg/kg BW per week (0.57 μg/kg BW per day) derived by JECFA (2011), the health risk from redissolved I–Hg from NP-Hg is small.
显示更多 [+] 显示较少 [-]Toxic arsenic in marketed aquatic products from coastal cities in China: Occurrence, human dietary exposure risk, and coexposure risk with mercury and selenium
2022
Guo, Chenqi | Hu, Linrui | Jiang, Lei | Feng, Hongru | Hu, Boyuan | Zeng, Tao | Song, Shuang | Zhang, Haiyan
To improve the accuracy of dietary risk assessment of arsenic (As) from aquatic products, toxic As species (As(III), As(V), monomethylarsonic acid [MMA], and dimethylarsinic acid [DMA]) and total As were analyzed in 124 marketed aquatic products from eight coastal cities in China. Distribution characteristics of Toxic As (the sum of the four toxic As species) in the samples and associated risk of human dietary exposure were emphatically investigated. The impact of cooccurrence of As and other chemical elements in the aquatic products was assessed based on our former results of mercury (Hg) and selenium (Se). Toxic As contents (maximum value 0.358 mg kg⁻¹ wet weight) in the samples accounted for at most 14.1% of total As. DMA was the major component (mean proportion 50.8% for shellfish, 100% for fish) of Toxic As in aquatic products. Shellfish contained more Toxic As than fish did. Mean estimated daily intakes of Toxic As for the residents with aquatic product consumption rates of 46.1–235 g day⁻¹ ranged from 0.034 to 0.290 μg kg⁻¹ day⁻¹. Potential health risk was indicated among those who greatly consumed aquatic products, as their target hazard quotient (THQ) and target cancer risk (TR) values exceeded safety thresholds (1 for THQ, 10⁻⁴ for TR). DMA and MMA exposure contributed to 3.42–7.72% of the THQTₒₓᵢc Aₛ. Positive correlations between concentrations of As and Hg (Fish: r = 0.47, p < 0.01; Shellfish: r = 0.60, p < 0.01), as well as between that of As and Se (Fish: r = 0.69, p < 0.01; Shellfish: r = 0.37, p < 0.01) were found in the samples. It requires attentions urgently that As and Hg coexposure through aquatic product consumption rose the sum THQ of Toxic As and methylmercury (MeHg) to approximately two to eight times as high as the THQTₒₓᵢc Aₛ.
显示更多 [+] 显示较少 [-]Metal stable isotopes in transplanted oysters as a new tool for monitoring anthropogenic metal bioaccumulation in marine environments: The case for copper
2021
Araújo, Daniel F. | Knoery, Joël | Briant, Nicolas | Ponzevera, Emmanuel | Chouvelon, Tiphaine | Auby, Isabelle | Yepez, Santiago | Bruzac, Sandrine | Sireau, Teddy | Pellouin-Grouhel, Anne | Akcha, Farida
Metal release into the environment from anthropogenic activities may endanger ecosystems and human health. However, identifying and quantifying anthropogenic metal bioaccumulation in organisms remain a challenging task. In this work, we assess Cu isotopes in Pacific oysters (C. gigas) as a new tool for monitoring anthropogenic Cu bioaccumulation into marine environments. Arcachon Bay was taken as a natural laboratory due to its increasing contamination by Cu, and its relevance as a prominent shellfish production area. Here, we transplanted 18-month old oysters reared in an oceanic neighbor area into two Arcachon Bay mariculture sites under different exposure levels to continental Cu inputs. At the end of their 12-month long transplantation period, the oysters’ Cu body burdens had increased, and was shifted toward more positive δ⁶⁵Cu values. The gradient of Cu isotope compositions observed for oysters sampling stations was consistent with relative geographic distance and exposure intensities to unknown continental Cu sources. A binary isotope mixing model based on experimental data allowed to estimate the Cu continental fraction bioaccumulated in the transplanted oysters. The positive δ⁶⁵Cu values and high bioaccumulated levels of Cu in transplanted oysters support that continental emissions are dominantly anthropogenic. However, identifying specific pollutant coastal source remained unelucidated mostly due to their broader and overlapping isotope signatures and potential post-depositional Cu isotope fractionation processes. Further investigations on isotope fractionation of Cu-based compounds in an aqueous medium may improve Cu source discrimination. Thus, using Cu as an example, this work combines for the first time a well-known caged bivalve approach with metal stable isotope techniques for monitoring and quantifying the bioaccumulation of anthropogenic metal into marine environments. Also, it states the main challenges to pinpoint specific coastal anthropogenic sources utilizing this approach and provides the perspectives for further studies to overcome them.
显示更多 [+] 显示较少 [-]Bioaccessibility-corrected health risk of heavy metal exposure via shellfish consumption in coastal region of China
2021
Chai, Minwei | Li, Ruili | Gong, Yuan | Shen, Xiaoxue | Yu, Lingyun
A systematic investigation into bioaccessible heavy metals in shellfish Crassostrea ariakensis, Chlamys farreri, and Sinonovacula constricta from coastal cities Shenzhen, Zhoushan, Qingdao, and Dandong was carried out to assess the potential health risk to residents in coastal regions in China. The bioaccessible fractions of heavy metals were (μg‧g⁻¹): Zn (0.63–15.01), Cu (0.10–12.91), Cd (0.01–0.64), As (0.11–0.33), Cr (0.07–0.12), Pb (0.01–0.03). The bioaccessibilities of heavy metals were Cr 61.86%, inorganic As (iAs) 60.44%, Pb 55.74%, Cu 46.83%, Zn 28.16%, and Cd 24.99%. As for child and adult, the bioaccessibility-corrected estimated daily intakes were acceptable and the non-carcinogenic risks posed by heavy metals were not obvious. The carcinogenic risks posed by bioaccessible heavy metals at the fifth percentile were 10-fold higher than the acceptable level (10⁻⁴), with iAs and Cd to be the major contributors, regardless of child or adult. The probabilistic estimation showed the low risk of shellfish consumption, which was verified by higher values of maximum allowable consumption rate and monthly meals at the 95 percentile; while some control of consumption rate and monthly meals was necessary for reducing heavy metal exposure of most shellfish samples, except for the safe consumption of S. constricta for both child and adult in Qingdao and Shenzhen, China.
显示更多 [+] 显示较少 [-]Gymnodimine A in mollusks from the north Atlantic Coast of Spain: Prevalence, concentration, and relationship with spirolides
2021
Lamas, JPablo | Arévalo, Fabiola | Moroño, Ángeles | Correa, Jorge | Rossignoli, Araceli E. | Blanco, Juan
Gymnodimine A has been found in mollusks obtained along the whole northern coast of Spain from April 2017 to December 2019. This is the first time that this toxin is detected in mollusks from the Atlantic coast of Europe. The prevalence of the toxin was, in general, low, being detected on average in approximately 6% of the obtained samples (122 out of 1900). The concentrations recorded were also, in general, low, with a median of 1.3 μg kg⁻¹, and a maximum value of 23.93 μg kg⁻¹. The maxima of prevalence and concentration were not geographically coincident, taking place the first at the easternmost part of the sampled area and the second at the westernmost part. In most cases (>94%), gymnodimine A and 13-desmethyl spirolide C were concurrently detected, suggesting that Alexandrium ostenfeldii could be the responsible producer species. The existence of cases in which gymnodimine A was detected alone suggests also that a Karenia species could also be involved. The geographical heterogeneity of the distribution suggests that blooms of the producer species are mostly local. Not all bivalves are equally affected, clams being less affected than mussels, oysters, and razor clams. Due to their relatively low toxicity, and their low prevalence and concentration, it seems that these toxins do not pose an important risk for the mollusk consumers in the area.
显示更多 [+] 显示较少 [-]Trace elements in shellfish from Shenzhen, China: Implication of coastal water pollution and human exposure
2020
Liu, Shan | Liu, Yanling | Yang, Dongfeng | Li, Chun | Zhao, Yang | Ma, Huimin | Luo, Xianru | Lu, Shaoyou
Shellfish constitute an important component of human diet, especially for those living in coastal regions. Shellfish have attracted extensive attention due to high enrichment of heavy metals. The aims of this study were to investigate the levels of trace elements in shellfish from coastal waters of Shenzhen, China and to assess human intake risks. Nine elements, including chromium (Cr), copper (Cu), iron (Fe), zinc (Zn), manganese (Mn), selenium (Se), cadmium (Cd), arsenic (As) and lead (Pb) were measured in 216 shellfish samples from eight species. Their concentrations (based on wet weight) were: Cr (0.28–21.4 mg kg⁻¹), Cu (1.40–158 mg kg⁻¹), Fe (16.5–5387 mg kg⁻¹), Zn (11.1–847 mg kg⁻¹), Mn (1.33–422 mg kg⁻¹), Se (0.15–11.8 mg kg⁻¹), Cd (0.02–18.4 mg kg⁻¹), Pb (<LOQ-10.9 mg kg⁻¹) and As (2.24–95.5 mg kg⁻¹), relatively greater than those reported in shellfish from other locations of China. Crassostrea ariakensis and Babylonia areolata were found to enrich As and Cd, respectively. The target hazard quotient (THQ) values of Cd and As were more than 1, suggesting considerable health risks from the consumption of shellfish of this zone. To our knowledge, this is the first study to assess the human risk exposure to trace elements via shellfish consumption in South China.
显示更多 [+] 显示较少 [-]Anti-inflammatory drugs in the marine environment: Bioconcentration, metabolism and sub-lethal effects in marine bivalves
2020
Almeida, Angela Maria da | Solé, Montserrat | Soares, Amadeu M.V.M. | Freitas, Rosa
Pharmaceuticals such as non-steroidal anti-inflammatory drugs (NSAIDs) have been found in the marine environment. Although there is a large body of evidence that pharmaceutical drugs exert negative impacts on aquatic organisms, especially in the freshwater compartment, only limited studies are available on bioconcentration and the effects of NSAIDs on marine organisms. Bivalves have a high ecological and socio-economic value and are considered good bioindicator species in ecotoxicology and risk assessment programs. Therefore, this review summarizes current knowledge on the bioconcentration and the effects of three widely used NSAIDs, diclofenac, ibuprofen and paracetamol, in marine bivalves exposed under laboratory conditions. These pharmaceutical drugs were chosen based on their environmental occurrence both in frequency and concentration that may warrant their inclusion in the European Union Watch List. It has been highlighted that ambient concentrations may result in negative effects on wild bivalves after long-term exposures. Also, higher trophic level organisms may be more impacted due to food-chain transfer (e.g., humans are shellfish consumers). Overall, the three selected NSAIDs were reported to bioconcentrate in marine bivalves, with recognized effects at different life-stages. Immune responses were the main target of a long-term exposure to the drugs. The studies selected support the inclusion of diclofenac on the European Union Watch List and highlight the importance of extending research for ibuprofen and paracetamol due to their demonstrated negative effects on marine bivalves exposed to environmental realistic concentrations, under laboratory conditions.
显示更多 [+] 显示较少 [-]A preliminary analysis of microplastics in edible versus non-edible tissues from seafood samples
2020
Akoueson, Fleurine | Sheldon, Lisa M. | Danopoulos, Evangelos | Morris, Steve | Hotten, Jessica | Chapman, Emma | Li, Jiana | Rotchell, Jeanette M.
Plastics have been widely reported to be present in the environment yet there are still many questions regarding the extent of this and the impacts these may have on both the environment and human health. The purpose of this investigation is to determine levels of micro and mesoplastic (MP), in the 1–5000 μm range, in commercially important species of finfish and shellfish. Additionally, to determine and compare the relative MP levels in edible versus non-edible tissues, and consider the wider implications in terms of human health concerns with a preliminary risk identification approach. For several fish species, samples taken from typically non-edible (gills, digestive system) and edible (muscle) flesh, and were analysed separately. Scallops, where all tissues are edible, were analysed whole. Significant differences were observed in the number of particles isolated from the finfish gills and digestive tissues relative to the control samples, but not in the edible flesh. For scallops, the abundance of particles in the Scottish samples did not vary significantly from the control, while the Patagonian scallops displayed significantly higher numbers of MPs. Characterisation of MPs by FTIR microscopy found that 16–60% (depending on species) were polyethylene terephthalate (PET) and polyethylene (PE) in origin. The risk identification results validate MPs as an emerging risk in the food chain and establish seafood as a vector for the exposure and uptake of MPs through the ingestion route for humans. Levels of MPs in seafood, and a direct link to the human food chain, suggests that their quantification be included as one food safety measure.
显示更多 [+] 显示较少 [-]Presence of trace metals in aquaculture marine ecosystems of the northwestern Mediterranean Sea (Italy)
2016
Squadrone, S. | Brizio, P. | Stella, C. | Prearo, M. | Pastorino, P. | Serracca, L. | Ercolini, C. | Abete, M.C.
Information regarding chemical pollutant levels in farmed fish and shellfish, along with the risks associated with their consumption is still scarce. This study was designed to assess levels of exposure to 21 trace elements in fish (Dicentrarchus labrax), mussels (Mytilus galloprovincialis) and oysters (Crassostrea gigas) collected from aquaculture marine ecosystems of the northwestern Mediterranean Sea. Metal concentrations showed great variability in the three species; the highest values of the nonessential elements As and Cd were found in oysters while the highest levels of Al, Pb and V were found in mussels. The essential elements Cu, Mn and Zn were highest in oysters, but Fe, Cr, Ni, Se, Co and Mo levels were highest in mussels. Fish had the lowest concentrations for all trace elements, which were at least one order of magnitude lower than in bivalves. The rare earth elements cerium and lanthanum were found at higher levels in mussels than in oysters, but undetectable in fish. The maximum values set by European regulations for Hg, Cd and Pb were never exceeded in the examined samples. However, comparing the estimated human daily intakes (EHDIs) with the suggested tolerable copper and zinc intakes suggested a potential risk for frequent consumers of oysters. Similarly, people who consume high quantities of mussels could be exposed to concentrations of Al that exceed the proposed TWI (tolerable weekly intake).
显示更多 [+] 显示较少 [-]