细化搜索
结果 1-10 的 159
Estimating the Potential of Carbon Sequestration in Tree Species of Chintapalle Forest Range, Narsipatnam Division, Visakhapatnam, Andhra Pradesh, India
2021
Korra Simhadri, Syam Kumar Bariki | A.V.V.S. Swamy
The potential of carbon sequestration of tree species in the Chintapalle forest range, of Narsipatnam Division, was estimated by using a non-destructive method. The sequestration of 6033 trees belonging to 22 species was investigated; the approximate height of tree species and the diameter at breast height (DBH) were measured for the estimation of CO2 sequestration. The maximum weight of carbon was observed in Pongamia pinnata (L.) Pierre species i.e (37987.06 kg) and the minimum weight of carbon was noted in Phyllanthus emblica L. species i.e is (61.8kg). The total carbon sequestrated by the entire tree species was (2370614.0 kg), The average carbon sequestered was (39865.81 kg). The highest sequestration was noted in the species P. pinnata (L.) Pierre i.e. (139271.95 kg) and the lowest (226.79 kg) was noted in the species P. emblica L. The maximum average DBH with maximum carbon sequestration potential was observed in Ficus benghalensis L. species, with higher total green (AGW) observed in all sites, whereas minimum average DBH with minimum carbon sequestration potential was noted in Bambusa vulgaris species. The regression analysis tests the relationship between two variables. The height of trees has no significant impact on the amount of CO2 sequestered F (32085087175.84, 12946607900) = 2.478262; P ≥ 0.05, which indicates that the tree height plays an insignificant role in CO2 sequestration (β = 2713.28 P ≥ 0.05). The dependent variable CO2 sequestered was also regressed on the predictor variable soil organic carbon (SOC) to test the relationship. SOC insignificantly predicted CO2 sequestrated F (5.83, 2.62) = 0.2236; P ≥ 0.25, indicating that the SOC has an insignificant role in CO2 sequestration (β = 102780.3 P ≥ 0.05). Insignificant relation was observed between the parameters SOC and height of tree species to the rate of carbon dioxide sequestered, and gave a regression equation of y = 10278x + 50863 with R2 = 0.100; y=2713.285803x-209800.8762 with R2 = 0.553 respectively.
显示更多 [+] 显示较少 [-]A Systematic Review and Characterization of the Major and Most Studied Urban Soil Threats in the European Union
2024
Binner, Hannah | Wojda, Piotr | Yunta, Felipe | Breure, Timo | Schievano, Andrea | Massaro, Emanuele | Jones, Arwyn | Newell, Jennifer | Paradelo, Remigio | Popescu Boajă, Iustina | Baltrėnaitė-Gedienė, Edita | Tuttolomondo, Teresa | Iacuzzi, Nicolò | Bondi, Giulia | Zupanc, Vesna | Mamy, Laure | Pacini, Lorenza | de Feudis, Mauro | Cardelli, Valeria | Kicińska, Alicja | Stock, Michael, J | Liu, Hongdou | Demiraj, Erdona | Schillaci, Calogero | University College Cork (UCC) | European Commission - Joint Research Centre [Ispra] (JRC) | Queen's University [Belfast] (QUB) | Universidade de Santiago de Compostella (USC) | Geological Institute of Romania, Bucureşti, Romania | Vilniaus Gedimino technikos universitetas ; Vilniaus Gedimino technikos universitetas | Università degli studi di Palermo - University of Palermo | Crops, Environment and Land Use Programme ; Irish Agriculture and Food Development Authority | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire de géologie de l'ENS (LGENS) ; Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) | University of Bologna | Polytechnic University of Marche [Ancona, Italy] / Università Politecnica delle Marche [Ancona, Italia] (UNIVPM) | AGH University of Science and Technology [Krakow, PL] (AGH UST) | Trinity College Dublin | Centre for planetary Health and Food Security, Griffith University | Agricultural University of Tirana
International audience | There is an urgent need by the European Union to establish baseline levels for many widespread pollutants and to set out specific levels for these under the Zero pollution action plan. To date, few systematic reviews, superseded by bibliometric analyses, have explored this issue. Even less research has been carried out to compare the efficacy of these two data extraction approaches. This study aims to address these two issues by i) constructing an inventory of the available information on urban soils, highlighting evidence gaps and measuring compliance with the Zero pollution action plan, and by ii) comparing the methods and results of these two data extraction approaches. Through Scopus and Web of Science databases, peer-reviewed articles using the terms urban soil in combination with specific urban soil threats and/or challenges were included. Notably, both approaches retrieved a similar number of initial articles overall, while the bibliometric analysis removed fewer duplicates and excluded fewer articles overall, leaving the total number of articles included in each approach as: 603 articles in the systematic review and 2372 articles in the bibliometric analysis. Nevertheless, both approaches identified the two main urban soil threats and/or challenges to be linked to soil organic carbon and/or heavy metals. This study gives timely input into the Zero pollution action plan and makes recommendations to stakeholders within the urban context.
显示更多 [+] 显示较少 [-]Adsorption and degradation of the herbicide nicosulfuron in a stagnic Luvisol and Vermic Umbrisol cultivated under conventional or conservation agriculture
2021
Cueff, Sixtine | Alletto, Lionel | Dumeny, Valerie | Benoit, Pierre | Pot, Valerie | AGroécologie, Innovations, teRritoires (AGIR) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Agence de l'Eau Adour-Garonne | Occitanie Region (BAG'AGES project) | Occitanie Region (BAG'AGES CISOL project)
International audience | The main goals of conservation agriculture are to enhance soil fertility and reduce soil degradation, especially through erosion. However, conservation agriculture practices can increase the risk of contamination by pesticides, mainly through vertical transfer via water flow. Better understanding of their sorption and degradation processes is thus needed in conservation agriculture as they control the amount of pesticide available for vertical transfer. The purpose of our study was to investigate the sorption and degradation processes of nicosulfuron in soil profiles (up to 90 cm deep) of a Vermic Umbrisol and a Stagnic Luvisol managed either in conventional or in conservation agriculture. Two laboratory sorption and incubation experiments were performed. Low sorption was observed regardless of the soil type, agricultural management or depth, with a maximum value of 1.3 +/- 2.0 L kg(-1). By the end of the experiment (91 days), nicosulfuron mineralisation in the Vermic Umbrisol was similar for the two types of agricultural management and rather depended on soil depth (29.0 +/- 2.3% in the 0-60-cm layers against 7.5 +/- 1.4% in the 60-90 cm). In the Stagnic Luvisol, nicosulfuron mineralisation reached similar value in every layer of the conservation agriculture plot (26.5% +/- 0.7%). On the conventional tillage plot, mineralisation decreased in the deepest layer (25-60 cm) reaching only 18.4 +/- 6.9% of the applied nicosulfuron. Regardless of the soil type or agricultural management, non-extractable residue formation was identified as the main dissipation process of nicosulfuron (45.1 +/- 8.5% and 50.2 +/- 7.0% under conventional and conservation agriculture respectively after 91 days). In our study, nicosulfuron behaved similarly in the Vermic Umbrisol regardless of the agricultural management, whereas the risk of transfer to groundwater seemed lower in the Stagnic Luvisol under conservation agriculture.
显示更多 [+] 显示较少 [-]Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis
2021
Liu, Bin | Wang, Xiaozhong | Ma, Lin | Chadwick, Dave | Chen, Xinping
The combined application of organic and synthetic nitrogen (N) fertilizers is being widely recommended in China’s vegetable systems to reduce reliance on synthetic N fertilizer. However, the effect of substituting synthetic fertilizer with organic fertilizer on vegetable productivity (yield, N uptake and nitrogen use efficiency) and reactive nitrogen (Nr) losses (N₂O emission, N leaching and NH₃ volatilization) remains unclear. A meta-analysis was performed using peer-reviewed papers published from 2000 to 2019 to comprehensively assess the effects of combined application of organic and synthetic N fertilizers. The results indicate that overall, the vegetable yield, N₂O emission and NH₃ volatilization were not significantly changed, whereas N leaching was reduced by 44.6% and soil organic carbon (SOC) concentration increased by 12.5% compared to synthetic N fertilizer alone. Specifically, when synthetic N substitution rates (SRs) were ≤70%, vegetable yields and SOC concentration were increased by 5.5%–5.6% and 13.1–18.0%, and N leaching was reduced by 41.6%–48.1%. At the high substitution rate (SR>70%), vegetable yield was reduced by 13.6%, N₂O emission was reduced by 14.3%, and SOC concentration increased by 16.4%. Mixed animal-plant sources of organic N preferentially increased vegetable yield and SOC concentration, and reduced N₂O emission and N leaching compared with single sources of organic-N. Greenhouse gas (GHG) emission was decreased by 28.4%–34.9% by combined applications of organic and synthetic N sources, relative to synthetic N fertilizer alone. We conclude that appropriate rates (SR ≤ 70%) of combined applications of organic and synthetic N fertilizers could improve vegetable yields, decrease Nr and GHG emission, and facilitate sustainable development of coupled vegetable-livestock systems.
显示更多 [+] 显示较少 [-]Effects of microplastics on soil organic carbon and greenhouse gas emissions in the context of straw incorporation: A comparison with different types of soil
2021
Yu, Hong | Zhang, Zheng | Zhang, Ying | Song, Qidao | Fan, Ping | Xi, Beidou | Tan, Wenbing
Plastic mulching and straw incorporation are common agricultural practices in China. Plastic mulching is suspected to be a significant source of microplastics in terrestrial environments. Straw incorporation has many effects on the storage of soil organic carbon (SOC) and greenhouse gas emissions, but these effects have not been studied in the presence of microplastic pollution. In this study, 365-day soil incubation experiments were conducted to assess the effects of maize straw and polyethylene microplastics on SOC fractions and carbon dioxide (CO₂) and nitrous oxide (N₂O) emissions in two different soils (fluvo-aquic and latosol). Against the background of straw incorporation, microplastics reduced the mineralization and decomposition of SOC, resulting in a microbially available SOC content decrease by 18.9%. In addition, microplastics were carbon-rich, but relatively stable and difficult to be used by microorganisms, thus increasing the mineral-associated SOC content by 52.5%. This indicated that microplastics had adverse effects on microbially available SOC and positive effects on mineral-associated SOC. Microplastics also decreased coarse particulate SOC (>250 μm), and increased non-aggregated silt and clay aggregated SOC (<53 μm). Furthermore, microplastics changed microbial community compositions, thereby reducing the CO₂ and N₂O emissions of straw incorporation by 26.5%–33.9% and 35.4%–39.7%, respectively. These results showed that microplastics partially offset the increase of CO₂ and N₂O emissions induced by straw incorporation. Additionally, the inhibitory effect of microplastics on CO₂ emissions in fluvo-aquic soil was lower than that in latosol soil, whereas the inhibitory effect on N₂O emissions had the opposite trend.
显示更多 [+] 显示较少 [-]Effects of field scale in situ biochar incorporation on soil environment in a tropical highly weathered soil
2021
Jien, Shih-Hao | Guo, Yulin | Liao, Chien-Sen | Wu, Yu-Ting | Igalavithana, Avanthi Deshani | Tsang, Daniel C.W. | Ok, Yong Sik
Biochar has been proven as a soil amendment to improve soil environment. However, mechanistic understanding of biochar on soil physical properties and microbial community remains unclear. In this study, a wood biochar (WB), was incorporated into a highly weathered tropical soil, and after 1 year the in situ changes in soil properties and microbial community were evaluated. A field trial was conducted for application of compost, wood biochar, and polyacrylamide. Microstructure and morphological features of the soils were characterized through 3D X-ray microscopy and polarized microscopy. Soil microbial communities were identified through next-generation sequencing (NGS). After incubation, the number of pores and connection throats between the pores of biochar treated soil increased by 3.8 and 7.2 times, respectively, compared to the control. According to NGS results, most sequences belonged to Anaerolinea thermolimosa, Caldithrix palaeochoryensis, Chthoniobacter flavus, and Cohnella soli. Canonical correlation analysis (CCA) further demonstrated that the microbial community structure was determined by inorganic N (IN), available P (AP), pH, soil organic C (SOC), porosity, bulk density (BD), and aggregate stability. The treatments with co-application of biochar and compost facilitated the dominance of Cal. palaeochoryensis, Cht. flavus, and Coh. soli, all of which promoted organic matter decomposition and ammonia oxidation in the soil. The apparent increases in IN, AP, porosity, and SOC caused by the addition of biochar and compost may be the proponents of changes in soil microbial communities. The co-application of compost and biochar may be a suitable strategy for real world biochar incorporation in highly weathered soil.
显示更多 [+] 显示较少 [-]Variations in aggregate-associated organic carbon and polyester microfibers resulting from polyester microfibers addition in a clayey soil
2020
Zhang, G.S. | Zhang, F.X.
Organic carbon is an essential element for sustainable soil management. While the effects of microplastics on soil physical and biological properties are presenting, it remains unclear whether the organic carbon dynamics of soil are altered by increased microplastic accumulation. The objectives of this study were to evaluate the influences of different polyester microfiber (PMF 0, 0.1% and 0.3% of soil dry weight) and organic material (OM 0, 1%, 2% and 3% of soil dry weight) addition levels on soil organic carbon and to determine the PMF distribution in aggregates from a pot experiment. After 75 days of incubation under 6 wet-dry cycles, the concentrations of soil total organic carbon did not differ significantly between the PMF (9.7 ± 6.6 g kg⁻¹) and control (9.7 ± 6.9 g kg⁻¹) treatments. However, PMF addition significantly reduced the organic carbon concentration in the large (>2 mm) macro-aggregates compared to the control treatment (10.6 ± 4.8 g kg⁻¹ vs. 11.7 ± 4.4 g kg⁻¹), but the results were opposite in the small (2–0.25 mm)macro-aggregates (10.2 ± 4.9 g kg⁻¹ vs. 8.4 ± 3.8 g kg⁻¹). In this study, less than 30% of added PMFs were incorporated into soil aggregates. In addition, the abundance and average length of aggregate-associated PMF in the large (2210 ± 180 particles per g aggregate and 2.08 ± 0.17 mm) and small (1820 ± 150 particles per g aggregate and 1.68 ± 0.11 mm) macro-aggregates were significantly greater than those in the micro-aggregates (1010 ± 70 particles per g aggregate and 0.72 ± 0.05 mm). Our results demonstrate that the distribution of organic carbon in soil macro-aggregates is affected by PMFs addition. Thus, we propose that the behavior of microplastics inside soil aggregates should be further explored to clarify their effects on the physical protection of soil organic carbon.
显示更多 [+] 显示较少 [-]Mercury isotopes in frozen soils reveal transboundary atmospheric mercury deposition over the Himalayas and Tibetan Plateau
2020
Huang, Jie | Kang, Shichang | Yin, Runsheng | Guo, Junming | Lepak, Ryan | Mika, Sillanpää | Tripathee, Lekhendra | Sun, Shiwei
The concentration and isotopic composition of mercury (Hg) were studied in frozen soils along a southwest-northeast transect over the Himalaya-Tibet. Soil total Hg (HgT) concentrations were significantly higher in the southern slopes (72 ± 54 ng g−1, 2SD, n = 21) than those in the northern slopes (43 ± 26 ng g−1, 2SD, n = 10) of Himalaya-Tibet. No significant relationship was observed between HgT concentrations and soil organic carbon (SOC), indicating that the HgT variation was not governed by SOC. Soil from the southern slopes showed significantly negative mean δ202Hg (−0.53 ± 0.50‰, 2SD, n = 21) relative to those from the northern slopes (−0.12 ± 0.40‰, 2SD, n = 10). The δ202Hg values of the southern slopes are more similar to South Asian anthropogenic Hg emissions. A significant correlation between 1/HgT and δ202Hg was observed in all the soil samples, further suggesting a mixing of Hg from South Asian anthropogenic emissions and natural geochemical background. Large ranges of Δ199Hg (−0.45 and 0.24‰) were observed in frozen soils. Most of soil samples displayed negative Δ199Hg values, implying they mainly received Hg from gaseous Hg(0) deposition. A few samples had slightly positive odd-MIF, indicating precipitation-sourced Hg was more prevalent than gaseous Hg(0) in certain areas. The spatial distribution patterns of HgT concentrations and Hg isotopes indicated that Himalaya-Tibet, even its northern part, may have been influenced by transboundary atmospheric Hg pollution from South Asia.
显示更多 [+] 显示较少 [-]A three-phase-successive partition-limited model to predict plant accumulation of organic contaminants from soils treated with surfactants
2020
The application of surfactants is an effective way to inhibit the migration of organic contaminants (OCs) from soil to plants, and thus would be a great candidate method for producing safe agricultural products in organic-contaminated farmland. In this study, it was found that cetyltrimethyl ammonium bromide (CTMAB) reduced the OCs in cabbage by 22.0–64.1%, and those in lettuce by 18.8–36.5%. We developed a mathematical model to predict the accumulation of OCs in plants in the presence of surfactants. The successive partitioning of OCs among three phases, namely, soil, soil water and plant roots, was considered. The equilibrium of OC between the soil and soil water was scaled using the sorption coefficient of OCs on soils normalized by the soil organic carbon (Kₒc) and carbon-normalized OCs sorption coefficient with the sorbed surfactants (Kₛₛ). To precisely calculate the Kₒc and Kₛₛ, the bioavailable and bound OCs were measured using a sequential extraction method. Linear positive correlations between the logarithm of Kₒc (or Kₛₛ) and the logarithm of the octanol-water partition coefficient (log Kₒw) of OCs were established for laterite soils, paddy soils and black soils. In the presence of CTMAB, the equilibrium of OCs between the soil water and plant roots was scaled using the carbon-normalized OC sorption coefficient with the sorbed surfactants (Kₛf), whose logarithmic value was linearly correlated with the log Kₒw of the OCs. A three-phase-successive partition-limited model was developed based on these relationships, demonstrating an average prediction accuracy of 76.6 ± 36.8%. Our results indicated that the decrease in bioavailable OCs in soils and the increase in sorption of OCs on roots should be taken into consideration when predicting plant uptake. This research provides a validated mathematical model for predicting the concentration of OCs in plants in the presence of surfactants.
显示更多 [+] 显示较少 [-]Low O2 level enhances CH4-derived carbon flow into microbial communities in landfill cover soils
2020
He, Ruo | Su, Yao | Leewis, Mary-Cathrine | Chu, Yi-Xuan | Wang, Jing | Ma, Ruo-Chan | Wu, Donglei | Zhan, Liang-Tong | Herriott, Ian Charold | Leigh, Mary Beth
CH₄ oxidation in landfill cover soils plays a significant role in mitigating CH₄ release to the atmosphere. Oxygen availability and the presence of co-contaminants are potentially important factors affecting CH₄ oxidation rate and the fate of CH₄-derived carbon. In this study, microbial populations that oxidize CH₄ and the subsequent conversion of CH₄-derived carbon into CO₂, soil organic C and biomass C were investigated in landfill cover soils at two O₂ tensions, i.e., O₂ concentrations of 21% (“sufficient”) and 2.5% (“limited”) with and without toluene. CH₄-derived carbon was primarily converted into CO₂ and soil organic C in the landfill cover soils, accounting for more than 80% of CH₄ oxidized. Under the O₂-sufficient condition, 52.9%–59.6% of CH₄-derived carbon was converted into CO₂ (CECO₂₋C), and 29.1%–39.3% was converted into soil organic C (CEₒᵣgₐₙᵢc₋C). A higher CEₒᵣgₐₙᵢc₋C and lower CECO₂₋C occurred in the O₂-limited environment, relative to the O₂-sufficient condition. With the addition of toluene, the carbon conversion efficiency of CH₄ into biomass C and organic C increased slightly, especially in the O₂-limited environment. A more complex microbial network was involved in CH₄ assimilation in the O₂-limited environment than under the O₂-sufficient condition. DNA-based stable isotope probing of the community with ¹³CH₄ revealed that Methylocaldum and Methylosarcina had a higher relative growth rate than other type I methanotrophs in the landfill cover soils, especially at the low O₂ concentration, while Methylosinus was more abundant in the treatment with both the high O₂ concentration and toluene. These results indicated that O₂-limited environments could prompt more CH₄-derived carbon to be deposited into soils in the form of biomass C and organic C, thereby enhancing the contribution of CH₄-derived carbon to soil community biomass and functionality of landfill cover soils (i.e. reduction of CO₂ emission).
显示更多 [+] 显示较少 [-]