细化搜索
结果 1-10 的 115
Extraction and Recovery of Polycyclic Aromatic Hydrocarbons in Petroleum Contaminated Soils Using Supercritical Water by Response Surface Methodology 全文
2019
Motamedimehr, Sh. | Gitipour, S.
Finding an environment-friendly and affordable method to remove contaminated soils from Polycyclic Aromatic Hydrocarbons (PAHs) has now become an attractive field for researchers, with super-critical fluid extraction being an innovative process in the field of contaminated soil treatment. Extraction with super-critical fluid is a simple and rapid extraction process that uses super-critical fluids as solvents. The present study has investigated the extraction of contaminated soil with Polycyclic Aromatic Hydrocarbons (PAHs) by means of batch supercritical water reactor, employing variables like pressure (100–300 bar), temperature (60–140 ◦C), residence time (0.5–3 hours), and base, acidic, and neutral pH values. In order optimize the process parameters, Response Surface Methodology (RSM) has been used. Results show that removal efficiency of PAHs is between 82%-100%, where the highest PAHs removal efficiency (100%) has been observed in Test No. 22, with a pressure of 300 bars, temperature of 500°C, acidic pH equal to 5, and duration of 3 hours. In addition, the lowest removal efficiency of these compounds (82%) has been obtained in Test No. 26, with a pressure of 300 bars, temperature of 350°C, base pH of 9, and duration of half an hour. According to the results from this study, it has become clear that residence time is the most important and most effective parameter for removing PAHs from contaminated soil. Afterwards, temperature and pH are most influential with pressure showing the least effect. Using supercritical water method in appropriate conditions can eliminate more than 99% of aromatic contamination.
显示更多 [+] 显示较少 [-]Physical, chemical, and microbial contaminants in food waste management for soil application: A review 全文
2022
O'Connor, James | Mickan, Bede S. | Siddique, Kadambot H.M. | Rinklebe, Jörg | Kirkham, M.B. | Bolan, Nanthi S.
Currently, 1.3 billion tonnes of food are thrown away each year, most of which are incinerated or landfilled causing large environmental, social, and economic issues. Therefore, the utilisation of food waste as biofertilisers, such as composts and digestates, is a solution to reduce the problems created by incineration and landfilling whilst simultaneously amending soils. The improper disposal of food wastes and bulking materials can contribute to high levels of contaminants within the end-product. Moreover, the food waste and bulking materials, themselves, may contain trace amounts of contaminants. These contaminants tend to have long half-lives, are easily mobile within soil and plants, can accumulate within the food supply chain, and have moderate to high levels of toxicity. This review aims to examine the current and emerging contaminants of high concern that impact the quality of food-waste fertilisers. The paper presents the volume of current and emerging contaminants of plastics, other physical (particulate) contaminants, heavy metals, pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), per- and polyfluoroalkyl substances (PFAS), and pathogens within food-waste composts and digestates. Due to the large extent of organic chemical contaminants and the unknown level of toxicity and persistence, the risk assessment of organic chemical contaminants in the food-supply chain remains largely unknown. This study has presented available data from literature of various contaminants found in food waste, and composts and digestates derived from food waste, and evaluated the data with current regulations globally. Overall, to reduce contaminants in composts and digestates, more studies are required on the implementation of proper disposal separation, effective composting and digestion practices, increased screening of physical contaminants, development of compostable plastics, and increased regulatory policies on emerging, problematic contaminants. Moreover, examination of emerging contaminants in food-waste composts and digestates is needed to ensure food security and reduce future human-health risks.
显示更多 [+] 显示较少 [-]Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge 全文
2022
Wang, Chuanxi | Liu, Xiaofei | Chen, Feiran | Yue, Le | Cao, Xuesong | Li, Jing | Cheng, Bingxu | Wang, Zhenyu | Xing, Baoshan
Selenium engineered nanomaterials (Se ENMs)-enabled agriculture has developed rapidly, however, the roles of surface charge in the bioavailability and enrichment efficiency of Se ENMs are still unknown. Herein, various Se ENMs of homogenous size (40–60 nm) and different surface charges (3.2 ± 0.7, −29.0 ± 0.4, and 45.5 ± 1.3 mV) were prepared to explore the Se content and nutritional quality in Brassica chinensis L. The results demonstrated that soil application of various Se ENMs (0.05 mg kg⁻¹) displayed different bio-availabilities via modulating the secretion of root exudates (e.g., tartaric, malic, and citric acids), microbial community composition (e.g., Flavobacterium, Pseudomonas, Paracoccus, Bacillus and Rhizobium) and root cell wall. Negatively charged Se ENMs (Se (−)) showed the highest Se content in the shoot of B. chinensis (3.7-folds). Se (−) also significantly increased yield (156.9%) and improved nutritional quality (e.g., ascorbic acid, amino acids, flavonoids, fatty acids, and tricarboxylic acid) of B. chinensis. Moreover, after harvest, the Se (−) did not lead to significant change in Se residue in soil, but the amount of Se residue in soil was increased by 5.5% after applying the traditional Se fertilizer (selenite). Therefore, this study provides useful information for producing Se-fortified agricultural products, while minimizing environmental risk.
显示更多 [+] 显示较少 [-]Impact of metal-oxide nanoparticles on growth, physiology and yield of tomato (Solanum lycopersicum L.) modulated by Azotobacter salinestris strain ASM 全文
2021
Ahmed, Bilal | Syed, Asad | Rizvi, Asfa | Shahid, Mohammad | Bahkali, Ali H. | Khan, Mohammad Saghir | Musarrat, Javed
The current study for the first time demonstrates the interference of a free-living, N₂-fixing, and nanoparticle (NP) tolerant Azotobacter salinestris strain ASM recovered from metal-polluted soil with tomato plant-metal oxide NPs (ZnO, CuO, Al₂O₃, and TiO₂) interactions in a sandy clay loam soil system with bulk materials as control. Tomato plants were grown till full maturity in soils amended with 20–2000 mg kg⁻¹ of each metal-oxide NP with and without seed biopriming and root-inoculation of A. salinestris. A. salinestris was found metabolically active, producing considerably high amounts of bioactive indole-3-acetic-acid, morphologically unaffected, and with low alteration of cell membrane permeability under 125–1500 μgml⁻¹ of NPs. However, ZnO-NPs slightly alter bacterial membrane permeability. Besides, A. salinestris secreted significantly higher amounts of extracellular polymeric substance (EPS) even under NP exposure, which could entrap the NPs and form metal-EPS complex as revealed and quantified by SEM-EDX. NPs were also found adsorbed on bacterial biomass. EPS stabilized the NPs and provided negative zeta potential to NPs. Following soil application, A. salinestris improved the plant performance and augmented the yield of tomato fruits and lycopene content even in NPs stressed soils. Interestingly, A. salinestris inoculation enhanced photosynthetic pigment formation, flower attributes, plant and fruit biomass, and reduced proline level. Bacterial inoculation also reduced the NP’s uptake and accumulation significantly in vegetative organs and fruits. The organ wise order of NP’s internalization was roots > shoots > fruits. Conclusively, A. salinestris inoculation could be an alternative to increase the production of tomato in metal-oxide NPs contaminated soils.
显示更多 [+] 显示较少 [-]Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, As and Cr) in wheat grain receiving repeated Zn fertilizers 全文
2020
Liu, Yumin | Liu, Dun-Yi | Zhang, Wei | Chen, Xiu-Xiu | Zhao, Qing-Yue | Chen, Xin-Ping | Zou, Chun-Qin
Soil application of Zn fertilizer is an effective approach to improve yield and Zn accumulation in wheat grain. However, it remains unclear whether repeated Zn application can result in high accumulation of heavy metals (HMs) in soils and grains and thus represents a potential risk for human consumption. This study aimed to evaluate the health risk assessment of HMs in a wheat production system which had continuously received 8 years of Zn application at varying rates (0, 2.3, 5.7, 11.4, 22.7, 34.1 kg Zn ha⁻¹). The results showed that Zn application significantly increased the soil total Zn concentration without affecting concentrations of As, Pb, Cd, Cu and Cr. Across Zn rates, Zn application increased grain concentrations of Zn, Pb and Cd by 75%, 51% and 14%, respectively, and reduced grain As concentration by 14%. The human health risk assessment revealed that the threshold hazard quotients for the individual HM were below 1, independent of Zn rates. The hazard index (HI) values at Zn rates of 11.4, 22.7 and 34.1 kg Zn ha⁻¹ were significantly greater than that at null Zn treatment. Furthermore, exposures to As, Cu and Zn accounted for 97% of HI at all Zn rates. Analysis of the threshold cancer risk with Pb and As showed that ingestion of wheat grain even from highest Zn application rate wouldn’t bring the lifetime carcinogenic risk. In contrast, long-term Zn application significantly reduced the carcinogenic risk of As by 9.7–26.5%. In conclusion, repeated soil applications of Zn at optimal rate (5.7 kg Zn ha⁻¹) didn’t cause health risk for Zn, Cu, Cd, Pb, Cr, and As, while improving productivity and grain Zn concentration of wheat to meet human recruitment. Our study highlights the importance of appropriate Zn fertilizer management in improving grain quality while reducing HMs risks from human consumption.
显示更多 [+] 显示较少 [-]Uptake and dissipation of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam in greenhouse chrysanthemum 全文
2020
Gong, Wenwen | Jiang, Mengyun | Zhang, Tingting | Zhang, Wei | Liang, Gang | Li, Bingru | Hu, Bin | Han, Ping
Production of chrysanthemum (Dendranthema grandiflora) in greenhouses often requires intensive pesticide use, which raises serious concerns over food safety and human health. This study investigated uptake, translocation and residue dissipation of typical fungicides (metalaxyl-M and fludioxonil) and insecticides (cyantraniliprole and thiamethoxam) in greenhouse chrysanthemum when applied in soils. Chrysanthemum plants could absorb these pesticides from soils via roots to various degrees, and bioconcentration factors (BCFLS) were positively correlated with lipophilicity (log Kₒw) of pesticides. Highly lipophilic fludioxonil (log Kₒw = 4.12) had the greatest BCFLS (2.96 ± 0.41 g g⁻¹), whereas hydrophilic thiamethoxam (log Kₒw = −0.13) had the lowest (0.09 ± 0.03 g g⁻¹). Translocation factors (TF) from roots to shoots followed the order of TFₗₑₐf > TFₛₜₑₘ > TFfₗₒwₑᵣ. Metalaxyl-M and cyantraniliprole with medium lipophilicity (log Kₒw of 1.71 and 2.02, respectively) and hydrophilic thiamethoxam showed relatively strong translocation potentials with TF values in the range of 0.29–0.81, 0.36–2.74 and 0.30–1.03, respectively. Dissipation kinetics in chrysanthemum flowers followed the first-order with a half-life of 21.7, 5.5, 10.0 or 8.2 days for metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam, respectively. Final residues of these four pesticides, including clothianidin (a primary toxic metabolite of thiamethoxam), in all chrysanthemum flower samples were below the maximum residue limit (MRL) values 21 days after two soil applications each at the recommended dose (i.e., 3.2, 2.1, 4.3 and 4.3 kg ha⁻¹, respectively). However, when doubling the recommended dose, the metabolite clothianidin remained at concentrations greater than the MRL, despite that thiamethoxam concentration was lower than the MRL value. This study provided valuable insights on the uptake and residues of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam (including its metabolite clothianidin) in greenhouse chrysanthemum production, and could help better assess food safety risks of chrysanthemum contamination by parent pesticides and their metabolites.
显示更多 [+] 显示较少 [-]Effects of fly ash application on plant biomass and element accumulations: a meta-analysis 全文
2019
Yu, Chih-Li | Deng, Qi | Jian, Siyang | Li, Jianwei | Dzantor, E Kudjo | Hui, Dafeng
Fly ash generated from coal-fired power plants is a source of potential pollutants, but can be used as a soil ameliorant to increase plant biomass and yield in agriculture. However, the effects of fly ash soil application on plant biomass and the accumulation of both nutrient and toxic elements in plants remain unclear. Based on 85 articles, we conducted a comprehensive meta-analysis to evaluate changes in plant biomass and concentrations of 21 elements in plants in response to fly ash application. These elements included macro-nutrients (N, P, K, Ca, and S), micro-nutrients (B, Co, Cu, Fe, Mn, Mo, Ni, and Zn), and metal(loid)s (Al, As, Cd, Cr, Pb, and Se). Overall, fly ash application decreased plant biomass by 15.2%. However, plant biomass was enhanced by fly ash application by 11.6–29.2% at lower application rates (i.e. <25% of soil mass), and decreased by 45.8% at higher application rates (i.e. 50–100%). Belowground biomass was significantly reduced while yield was enhanced by fly ash application. Most of the element concentrations in plants were enhanced by fly ash application, and followed a descending order with metal(loid)s > micro-nutrients > macro-nutrients. Concentrations of elements tended to increase with an increase in fly ash application rate. Our syntheses indicated that fly ash should be applied at less than 25% in order to enhance plant biomass and yield but avoid high accumulations of metal(loid)s.
显示更多 [+] 显示较少 [-]What are the effects of soil treatment procedures (sterilization by γ-irradiation and solvent-assisted spiking) on DDE bioaccumulation by earthworms? 全文
2018
Škulcová, Lucia | Scherr, Kerstin E. | Hofman, Jakub | Bielská, Lucie
Ionizing γ-irradiation and solvent-assisted spiking are frequently applied to eliminate microbial activity and to induce hydrophobic organic compounds (HOCs) into soil, respectively, when studying the accumulation of chemicals in terrestrial organisms. However, the side-effects that may arise from these treatments on soil-HOC interaction and, subsequently, the kinetics and extents of bioaccumulation are not thoroughly understood. To this end, the accumulation of 1,1-dichloro-2,2-bis(p-chlorophenyl)etylene (p,p’-DDE) by Eisenia andrei was studied in sterilized or unsterilized and freshly spiked (FS) or historically contaminated (HC) soils in parallel with an analysis of aliphatic and hydrophilic soil organic matter (SOM) moieties using mid-infrared diffuse reflectance spectroscopy (DRIFT-S). Irradiation did not impart significant changes on spectral SOM descriptors. In contrast, earthworm inhabitation increased the relative presence of aliphatic moieties to a greater extent than hydrophilic ones, reaching or exceeding pre-treatment levels. Overall, effects on SOM chemistry can be ranked as earthworms > spiking > irradiation. Corresponding changes at the bioaccumulation level were observed for the FS soil (i.e., a 27% reduction in bioaccumulation upon sterilization) but not for the HC soil. This implies that in contrast to the interactions between aged p,p’-DDE and sterilized HC soil, the interactions established between freshly added p,p’-DDE and sterilized FS soil were altered by γ-irradiation-induced secondary effects alone or in combination with earthworm inhabitation. Thus, although the soil treatment processes studied here should not drastically impact compound bioaccumulation, they should be considered in mechanistic studies where the qualitative and quantitative aspects of compound-soil (organic matter)-earthworm interactions are at the centre of attention.
显示更多 [+] 显示较少 [-]Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants 全文
2018
Hussain, Afzal | Ali, Shafaqat | Rizwan, Muhammad | Zia ur Rehman, Muhammad | Javed, Muhammad Rizwan | Imran, Muhammad | Chatha, Shahzad Ali Shahid | Nazir, Rashid
An experiment was performed to explore the interactive impacts of zinc oxide nanoparticles (ZnO NPs) and cadmium (Cd) on growth, yield, antioxidant enzymes, Cd and zinc (Zn) concentrations in wheat (Triticum aestivum). The ZnO NPs were applied both in Cd-contaminated soil and foliar spray (in separate studies) on wheat at different intervals and plants were harvested after physiological maturity. Results depicted that ZnO NPs enhanced the growth, photosynthesis, and grain yield, whereas Cd and Zn concentrations decreased and increased respectively in wheat shoots, roots and grains. The Cd concentrations in the grains were decreased by 30–77%, and 16–78% with foliar and soil application of NPs as compared to the control, respectively. The ZnO NPs reduced the electrolyte leakage while increased SOD and POD activities in leaves of wheat. It can be concluded that ZnO NPs (levels used in the study) could effectively reduce the toxicity and concentration of Cd in wheat whereas increase the Zn concentration in wheat. Thus, ZnO NPs might be helpful in decreasing Cd and increasing Zn biofortification in cereals which might be effective to reduce the hidden hunger in humans owing the deficiency of Zn in cereals.
显示更多 [+] 显示较少 [-]Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce 全文
2017
Duan, Manli | Li, Haichao | Gu, Jie | Tuo, Xiaxia | Sun, Wei | Qian, Xun | Wang, Xiaojuan
Antibiotics and antibiotic resistance genes (ARGs) in soil can affect human health via the food chain. Biochar is a soil amendment but its impacts on ARGs and the microbial communities associated with soil and vegetables are unclear. Therefore, we established three lettuce pot culture experiments, i.e., O300: 300 mg/kg oxytetracycline (OTC), BO300: 300 mg/kg OTC + 2% biochar, and a control without OTC or biochar. We found that under BO300, the relative abundances of ARGs were reduced by 51.8%, 43.4%, and 44.1% in lettuce leaves, roots, and soil, respectively, compared with O300. intI1 was highly abundant in soil and lettuce, and it co-occurred with some ARGs (tetW, ermF, and sul1). Redundancy analysis and network analysis indicated that the bacterial community succession was the main mechanism that affected the variations in ARGs and intI1. The reduction of Firmicutes due to the biochar treatment of soil and lettuce was the main factor responsible for the removal of tetracycline resistance genes in leaves. Biochar application led to the disappearance of human pathogenic bacteria (HPB), which was significantly correlated with the abundances of ermF and ermX. In summary, biochar is an effective farmland amendment for reducing the abundances of antibiotics, ARGs, and HPB in order to ensure the safety of vegetables and protect human health.
显示更多 [+] 显示较少 [-]