细化搜索
结果 1-10 的 121
Distribution of antibiotic resistance genes (ARGs) in anaerobic digestion and land application of swine wastewater 全文
2016
Sui, Qianwen | Zhang, Junya | Chen, Meixue | Tong, Juan | Wang, Rui | Wei, Yuansong
Swine farm and the adjacent farmland are hot spots of ARGs. However, few studies have investigated the on-site occurrence of ARGs distributed in the process of anaerobic digestion (AD) followed by land application of swine wastewater. Two typical swine farms, in southern and northern China respectively, with AD along with land application were explored on ARG distributions. ARGs were highly abundant in raw swine wastewater, AD effectively reduced the copy number of all detected ARGs (0.21–1.34 logs removal), but the relative abundance with different resistance mechanisms showed distinctive variation trends. The reduction efficiency of ARGs was improved by stable operational temperature and longer solid retention time (SRT) of AD. ARGs in soil characterized the contamination from the irrigation of the digested liquor. The total ARGs quantity in soil fell down by 1.66 logs in idle period of winter compared to application period of summer in the northern region, whereas the total amount was steady with whole-year application in south. Some persistent (sul1 and sul2) and elevated ARGs (tetG and ereA) in AD and land application need more attention.
显示更多 [+] 显示较少 [-]Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water 全文
2016
Zhang, Xiao-Hua | Xu, Yan-Bin | He, Xiao-Lin | Huang, Lu | Ling, Jia-Yin | Zheng, Li | Du, Qing-Ping
The antibiotic resistance genes (ARGs) from urban waste may spread to the environment with the discharge of leachate. Fifteen types of ARGs, including tetracycline, sulfonamides, AmpC β-lactamase and the class 1 integron gene were detected in the samples from the largest leachate treatment plant (LTP) in Guangzhou and its effluent receiving bodies (soil and surface water). The results showed that ARGs in leachates were in high levels and varied with seasons. The abundance of ARGs in the influent from high to low was in the turn of summer, winter, spring. About 2 to 4 orders of magnitude of ARGs were eliminated by the whole leachate treatment process. The predominant ARGs in the receiving soil were intI1, tetB, sul2, tetA and tetX, while those in the receiving surface water were sul2, intI1 and sul1, and the concentrations of ARGs in the receiving bodies were higher than those in the other natural bodies by 1 to 2 orders of magnitude. In addition, the results of bivariate correlation analysis showed that the abundances of ARGs (tetC, tetW, sul1, sul2, intI1 and FOX) were in significant correlation with the concentrations of heavy metals (Cu, Zn, Ni and Cr) (p < 0.05). LTPs are more likely to be sources of ARGs than wastewater treatment plant (WWTP) and need to be focused on.
显示更多 [+] 显示较少 [-]Particulate-bound polycyclic aromatic hydrocarbon sources and determinants in residential homes 全文
2016
Cattaneo, Andrea | Fermo, Paola | Urso, Patrizia | Perrone, Maria Grazia | Piazzalunga, Andrea | Tarlassi, Jessica | Carrer, Paolo | Cavallo, Domenico Maria
Human exposure to polycyclic aromatic hydrocarbons (PAHs) in indoor environments can be particularly relevant because people spend most of their time inside buildings, especially in homes. This study aimed to investigate the most important particle-bound PAH sources and exposure determinants in PM2.5 samples collected in 19 homes located in northern Italy. Complementary information about ion content in PM10 was also collected in 12 of these homes. Three methods were used for the identification of PAH sources and determinants: diagnostic ratios with principal component and hierarchical cluster analyses (PCA and HCA), chemical mass balance (CMB) and linear mixed models (LMMs). This combined and tiered approach allowed the infiltration of outdoor PAHs into indoor environments to be identified as the most important source in winter, with a relevant role played by biomass burning and traffic exhausts to be identified as a general source of PAHs in both seasons. Tobacco smoke exhibited an important impact on PAH levels in smokers' homes, whereas in the whole sample, cooking food and natural gas sources played a minor or negligible role. Nitrate, sulfate and ammonium were the main inorganic constituents of indoor PM10 owing to the secondary formation of ammonium sulfates and nitrates.
显示更多 [+] 显示较少 [-]Projecting future temperature-related mortality in three largest Australian cities 全文
2016
Guo, Yuming | Li, Shanshan | Liu, De Li | Chen, Dong | Williams, Gail | Tong, Shilu
We estimated net annual temperature-related mortality in Brisbane, Sydney and Melbourne in Australia using 62 global climate model projections under three IPPC SRES CO2 emission scenarios (A2, A1B and B1). In all cities, all scenarios resulted in increases in summer temperature-related deaths for future decades, and decreases in winter temperature-related deaths. However, Brisbane and Sydney will increase the net annual temperature-related deaths in the future, while a slight decrease will happen in Melbourne. Additionally, temperature-related mortality will largely increase beyond the summer (including January, February, March, November and December) in Brisbane and Sydney, while temperature-related mortality will largely decrease beyond the winter in Melbourne. In conclusion, temperature increases for Australia are expected to result in a decreased burden of cold-related mortality and an increased burden of heat-related mortality, but the balance of these differences varied by city. In particular, the seasonal patterns in temperature-related deaths will be shifted.
显示更多 [+] 显示较少 [-]Levels, sources and risk assessment of PAHs in multi-phases from urbanized river network system in Shanghai 全文
2016
Spatial-temporal distributions, sources identification and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in overlying water and surface sediments in urban river networks of Shanghai were studied. Analytical results showed that there was a significant seasonal variation in concentrations of ∑16PAHs in water, suspended particulate matter (SPM) and sediment phases in this study area. The PAHs pollution in these multi-phases were in the medium level compared with other areas around the world, and the levels of PAHs contamination in SPM and sediment phases in hierarchical rivers showed TS (the third-order stream) > FS (the first-order stream) > SS (the second-order stream). Two manners of isomer ratios and principal component analysis (PCA) were used to identify PAHs origins, and suggested that combustion processes are dominant for PAHs sources. The ratios of PAHs origins by fossil fuels combustion, coke burning and crude oil in hierarchical rivers were determined with FS > SS > TS in SPM and sediment phases, and the ratio of PAHs origins by traffic emissions was analyzed with TS > SS > FS. PAHs in water samples have a certain impact on aqueous ecological system especially due to the fact that the ∑ceq values of nine PAHs were calculated from 0.715 to 15.831 μg/L in winter, which inferred serious ecological risk to some special aquatic organisms. The calculations of MERMQ in sediment samples showed that the MERMQ values ranged from 0.021 to 1.209 in winter and 0.019 to 0.643 in summer, which suggested high toxicity at six sampling sites in winter and only one location in summer due to high levels of PAHs. Furthermore, the toxicity degree of sediments were demonstrated with TS > FS > SS.
显示更多 [+] 显示较少 [-]Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: A study based on myocardial toxicity 全文
2016
Zhang, Yingying | Ji, Xiaotong | Ku, Tingting | Li, Guangke | Sang, Nan
Substantial epidemiological evidence has consistently reported that fine particulate matter (PM2.5) is associated with an increased risk of cardiovascular outcomes. PM2.5 is a complex mixture of extremely small particles and liquid droplets composed of multiple components, and there has been high interest in identifying the specific health-relevant physical and/or chemical toxic constituents of PM2.5. In the present study, we analyzed 8 heavy metals (Cr, Ni, Cu, Cd, Pb, Zn, Mn and Co) in the PM2.5 collected during four different seasons in Taiyuan, a typical coal-burning city in northern China. Our results indicated that total concentrations of the 8 heavy metals differed among the seasons. Zn and Pb, which are primarily derived from the anthropogenic source, coal burning, were the dominant elements, and high concentrations of these two elements were observed during the spring and winter. To clarify whether these heavy metals in the locally collected PM2.5 were associated with health effects, we conducted health risk assessments using validated methods. Interestingly, Pb was responsible for greater potential health risks to children. Because cardiovascular disease (CVD) is a main contributor to the mortality associated with PM2.5 exposure, we performed experimental assays to evaluate the myocardial toxicity. Our in vitro experiments showed that the heavy metal-containing PM2.5 induced season-dependent apoptosis in rat H9C2 cells through a reactive oxygen species (ROS)-mediated inflammatory response. Our findings suggested that heavy metals bound to PM2.5 produced by coal burning play an important role in myocardial toxicity and contribute to season-dependent health risks.
显示更多 [+] 显示较少 [-]Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning? 全文
2016
Fort, Jérôme | Grémillet, David | Traisnel, Gwendoline | Amélineau, Françoise | Bustamante, Paco
Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning? 全文
2016
Fort, Jérôme | Grémillet, David | Traisnel, Gwendoline | Amélineau, Françoise | Bustamante, Paco
Studying long-term trends of contaminants in Arctic biota is essential to better understand impacts of anthropogenic activities and climate change on the exposure of sensitive species and marine ecosystems. We concurrently measured temporal changes (2006–2014) in mercury (Hg) contamination of little auks (Alle alle; the most abundant Arctic seabird) and in their major zooplankton prey species (Calanoid copepods, Themisto libellula, Gammarus spp.). We found an increasing contamination of the food-chain in East Greenland during summer over the last decade. More specifically, bird contamination (determined by body feather analyses) has increased at a rate of 3.4% per year. Conversely, bird exposure to Hg during winter in the northwest Atlantic (determined by head feather analyses) decreased over the study period (at a rate of 1.5% per year), although winter concentrations remained consistently higher than during summer. By combining mercury levels measured in birds and zooplankton to isotopic analyses, our results demonstrate that inter-annual variations of Hg levels in little auks reflect changes in food-chain contamination, rather than a reorganization of the food web and a modification of seabird trophic ecology. They therefore underline the value of little auks, and Arctic seabirds in general, as bio-indicators of long-term changes in environmental contamination.
显示更多 [+] 显示较少 [-]Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning? 全文
2016
Fort, Jérôme | Grémillet, David | Traisnel, Gwendoline | Amélineau, Françoise | Bustamante, Paco | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Percy FitzPatrick Institute of African Ornithology ; University of Cape Town | Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) ; Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | European Project: 631203,EC:FP7:PEOPLE,FP7-PEOPLE-2013-CIG,ARCTOX(2014)
International audience | Studying long-term trends of contaminants in Arctic biota is essential to better understand impacts of anthropogenic activities and climate change on the exposure of sensitive species and marine ecosystems. We concurrently measured temporal changes (2006e2014) in mercury (Hg) contamination of little auks (Alle alle; the most abundant Arctic seabird) and in their major zooplankton prey species (Calanoid copepods, Themisto libellula, Gammarus spp.). We found an increasing contamination of the food-chain in East Greenland during summer over the last decade. More specifically, bird contamination (determined by body feather analyses) has increased at a rate of 3.4% per year. Conversely, bird exposure to Hg during winter in the northwest Atlantic (determined by head feather analyses) decreased over the study period (at a rate of 1.5% per year), although winter concentrations remained consistently higher than during summer. By combining mercury levels measured in birds and zooplankton to isotopic analyses, our results demonstrate that inter-annual variations of Hg levels in little auks reflect changes in food-chain contamination, rather than a reorganization of the food web and a modification of seabird trophic ecology. They therefore underline the value of little auks, and Arctic seabirds in general, as bio-indicators of long-term changes in environmental contamination.
显示更多 [+] 显示较少 [-]Denitrification occurring on suspended sediment in a large, shallow, subtropical lake (Poyang Lake, China) 全文
2016
Yao, Xiaolong | Zhang, Lu | Zhang, Yunlin | Xu, Huixian | Jiang, Xingyu
Many lakes and rivers are enriched with high levels of suspended sediments (SPS). Denitrification occurring on suspended sediments (DSS) may play an important role in nitrogen removal in water columns with high SPS concentrations. Poyang Lake, with dramatic hydrologic variations, has high spatial and seasonal variation of SPS, and we hypothesized that DSS and nitrogen removal in this lake would vary similarly. DSS in Poyang Lake was determined by the traditional acetylene-inhibition method combined with a batch mode assay. Laboratory simulation experiments were also conducted to examine the factors controlling denitrification occurring on SPS. Seasonally, DSS rates at 15 sampling sites in Poyang Lake were 0.63 ± 0.24, 0.29 ± 0.17, 0.25 ± 0.18, and 0.52 ± 0.37 μmol N·L−1·d−1, respectively in spring, summer, autumn, and winter. Spatially, average DSS rates were higher in the northern lake area, which is connected to the Yangtze River, than in the upstream and central lake area. Lowest DSS rates occurred in semi-closed bay and dish lakes. Spatial and seasonal variations of DSS rates were affected by a combination of factors, in which nitrate concentrations, SPS composition, and concentrations of organic-SPS were the most important. These influencing factors were seasonally dependent, with nitrate concentrations having stronger effects on DSS during wet seasons than dry seasons. Results from a multiple stepwise regression model also demonstrated that DSS tended to occur on fine particles (e.g., clay particles, <4 μm). Evaluation of annual nitrogen loss by DSS was estimated according to the seasonal water budget and DSS rates in Poyang Lake. The total nitrogen loss by DSS was estimated to be 10800 ± 6090 t, which accounted for 2.8–9.9% of the nitrogen input, and this proportion was comparable to nitrogen removal by sediment denitrification. This result confirms that DSS was an important nitrogen sink in this large, turbid lake.
显示更多 [+] 显示较少 [-]On the association between outdoor PM2.5 concentration and the seasonality of tuberculosis for Beijing and Hong Kong 全文
2016
You, Siming | Tong, Yen Wah | Neoh, Koon Gee | Dai, Yanjun | Wang, Chi-Hwa
Tuberculosis (TB) is still a serious public health problem in various countries. One of the long-elusive but critical questions about TB is what the risk factors are and how they contribute for its seasonality. An ecologic study was conducted to examine the association between the variation of outdoor PM2.5 concentration and the TB seasonality based on the monthly TB notification and PM2.5 concentration data of Hong Kong and Beijing. Both descriptive analysis and Poisson regression analysis suggested that the outdoor PM2.5 concentration could be a potential risk factor for the seasonality of TB disease. The significant relationship between the number of TB cases and PM2.5 concentration was not changed when regression models were adjusted by sunshine duration, a potential confounder. The regression analysis showed that a 10 μg/m3 increase in PM2.5 concentrations during winter is significantly associated with a 3% (i.e. 18 and 14 cases for Beijing and Hong Kong, respectively) increase in the number of TB cases notified during the coming spring or summer for both Beijing and Hong Kong. Three potential mechanisms were proposed to explain the significant relationship: (1) increased PM2.5 exposure increases host's susceptibility to TB disease by impairing or modifying the immunology of the human respiratory system; (2) increased indoor activities during high outdoor PM2.5 episodes leads to an increase in human contact and thus the risk of TB transmission; (3) the seasonal change of PM2.5 concentration is correlated with the variation of other potential risk factors of TB seasonality. Preliminary evidence from the analysis of this work favors the first mechanism about the PM2.5 exposure-induced immunity impairment. This work adds new horizons to the explanation of the TB seasonality and improves our understanding of the potential mechanisms affecting TB incidence, which benefits the prevention and control of TB disease.
显示更多 [+] 显示较少 [-]Light absorption enhancement of black carbon from urban haze in Northern China winter 全文
2016
Chen, Bing | Bai, Zhe | Cui, Xinjuan | Chen, Jianmin | Andersson, August | Gustafsson, Örjan
Atmospheric black carbon (BC) is an important pollutant for both air quality and Earth's energy balance. Estimates of BC climate forcing remain highly uncertain, e.g., due to the mixing with non-absorbing components. Non-absorbing aerosols create a coating on BC and may thereby act as a lens which may enhance the light absorption. However, this absorption enhancement is poorly constrained. To this end a two-step solvent dissolution protocol was employed to remove both organic and inorganic coatings, and then investigate their effects on BC light absorption. Samples were collected at a severely polluted urban area, Jinan, in the North China Plain (NCP) during February 2014. The BC mass absorption cross-section (MAC) was measured for the aerosol samples before and after the solvent-decoating treatment, and the enhancement of MAC (EMAC) from the coating effect was defined as the ratio. A distinct diurnal pattern for the enhancement was observed, with EMAC 1.3 ± 0.3 (1 S.D.) in the morning, increasing to 2.2 ± 1.0 in the afternoon, after that dropping to 1.5 ± 0.8 in the evening-night. The BC absorption enhancement primarily was associated with urban-scale photochemical production of nitrate and sulfate aerosols. In addition to that, regional-scale haze plume with increasing sulfate levels strengthened the absorption enhancement. These observations offer direct evidence for an increased absorption enhancement of BC due to severe air pollution in China.
显示更多 [+] 显示较少 [-]