细化搜索
结果 1311-1320 的 7,292
Plastic in the inferno: Microplastic contamination in deep-sea cephalopods (Vampyroteuthis infernalis and Abralia veranyi) from the southwestern Atlantic 全文
2022
Ferreira, Guilherme V.b. | Justino, Anne K.s. | Eduardo, Leandro Nolé | Lenoble, Véronique | Fauvelle, Vincent | Schmidt, Natascha | Junior, Teodoro Vaske | Fredou, Thierry | Lucena-frédou, Flávia
Plastic in the inferno: Microplastic contamination in deep-sea cephalopods (Vampyroteuthis infernalis and Abralia veranyi) from the southwestern Atlantic 全文
2022
Ferreira, Guilherme V.b. | Justino, Anne K.s. | Eduardo, Leandro Nolé | Lenoble, Véronique | Fauvelle, Vincent | Schmidt, Natascha | Junior, Teodoro Vaske | Fredou, Thierry | Lucena-frédou, Flávia
Microplastics are a relevant environmental concern in marine ecosystems due to their ubiquity. However, knowledge on their dispersion patterns within the ocean basin and the interaction with biota are scarce and mostly limited to surface waters. This study investigated microplastic contamination in two species of deep-sea cephalopods from the southwestern Atlantic with different ecological behaviour: the vampire squid (Vampyroteuthis infernalis) and the midwater squid (Abralia veranyi). Microplastic contaminated most of the evaluated specimens. V. infernalis showed higher levels of contamination (9.58 ± 8.25 particles individual−1; p < 0.05) than A. veranyi (2.37 ± 2.13 part. ind.−1), likely due to the feeding strategy of V. infernalis as a faecal pellets feeder. The size of extracted microplastics was inversely proportional to the depth of foraging. The microplastics were highly heterogeneous in composition (shape, colour and polymer type). Our results provide information regarding microplastic interaction with deep-sea organisms and evidence of the biological influence in the microplastic sinking mechanism.
显示更多 [+] 显示较少 [-]Plastic in the inferno: Microplastic contamination in deep-sea cephalopods (Vampyroteuthis infernalis and Abralia veranyi) from the southwestern Atlantic 全文
2022
Ferreira, Guilherme V.B. | Justino, Anne K.S. | Eduardo, Leandro Nolé | Lenoble, Véronique | Fauvelle, Vincent | Schmidt, Natascha | Junior, Teodoro Vaske | Frédou, Thierry | Lucena-Frédou, Flávia
Microplastics are a relevant environmental concern in marine ecosystems due to their ubiquity. However, knowledge on their dispersion patterns within the ocean basin and the interaction with biota are scarce and mostly limited to surface waters. This study investigated microplastic contamination in two species of deep-sea cephalopods from the southwestern Atlantic with different ecological behaviour: the vampire squid (Vampyroteuthis infernalis) and the midwater squid (Abralia veranyi). Microplastic contaminated most of the evaluated specimens. V. infernalis showed higher levels of contamination (9.58 ± 8.25 particles individual⁻¹; p < 0.05) than A. veranyi (2.37 ± 2.13 part. ind.⁻¹), likely due to the feeding strategy of V. infernalis as a faecal pellets feeder. The size of extracted microplastics was inversely proportional to the depth of foraging. The microplastics were highly heterogeneous in composition (shape, colour and polymer type). Our results provide information regarding microplastic interaction with deep-sea organisms and evidence of the biological influence in the microplastic sinking mechanism.
显示更多 [+] 显示较少 [-]"Non-traditional" stable isotopes applied to the study of trace metal contaminants in anthropized marine environments 全文
2022
Ferreira Araujo, Daniel | Knoery, Joel | Briant, Nicolas | Vigier, Nathalie | Ponzevera, Emmanuel
"Non-traditional" stable isotopes applied to the study of trace metal contaminants in anthropized marine environments 全文
2022
Ferreira Araujo, Daniel | Knoery, Joel | Briant, Nicolas | Vigier, Nathalie | Ponzevera, Emmanuel
The advent of Multicollector ICP-MS advent inaugurated the analysis of new metal isotope systems, the so-called “non-traditional” isotopes. They are now available tools to study geochemical and ecotoxicological aspects of marine metal contamination and hence, to push the frontiers of our knowledge. However, such applications are still in their infancy, and an accessible state-of-the-art describing main applications, obstacles, gaps, and directions for further development was missing from the literature. This paper fills this gap and aims to encourage the marine scientific community to explore the contributions of this newly available information for the fields of chemical risk assessment, biomonitoring, and trophic transfer of metal contaminants. In the current “Anthropocene” epoch, metal contamination will continue to threaten marine aquatic ecosystems, and “non-traditional” isotopes can be a valuable tool to detect human-induced changes across time-space involving metal contaminants, and their interaction with marine biota.
显示更多 [+] 显示较少 [-]“Non-traditional” stable isotopes applied to the study of trace metal contaminants in anthropized marine environments 全文
2022
Araújo, Daniel F. | Knoery, Joël | Briant, Nicolas | Vigier, Nathalie | Ponzevera, Emmanuel
The advent of Multicollector ICP-MS inaugurated the analysis of new metal isotope systems, the so-called “non-traditional” isotopes. They are now available tools to study geochemical and ecotoxicological aspects of marine metal contamination and hence, to push the frontiers of our knowledge. However, such applications are still in their infancy, and an accessible state-of-the-art describing main applications, obstacles, gaps, and directions for further development was missing from the literature. This paper fills this gap and aims to encourage the marine scientific community to explore the contributions of this newly available information for the fields of chemical risk assessment, biomonitoring, and trophic transfer of metal contaminants. In the current “Anthropocene” epoch, metal contamination will continue to threaten marine aquatic ecosystems, and “non-traditional” isotopes can be a valuable tool to detect human-induced changes across time-space involving metal contaminants, and their interaction with marine biota.
显示更多 [+] 显示较少 [-]The MANA (MANagement of Atolls, 2017–2022) project for pearl oyster aquaculture management in the Central Pacific Ocean using modelling approaches: Overview of first results 全文
2022
Andréfouët, Serge | Lo-yat, Alain | Lefebvre, Sebastien | Bionaz, Océane | Liao, Vetea
The MANA (MANagement of Atolls, 2017–2022) project for pearl oyster aquaculture management in the Central Pacific Ocean using modelling approaches: Overview of first results 全文
2022
Andréfouët, Serge | Lo-yat, Alain | Lefebvre, Sebastien | Bionaz, Océane | Liao, Vetea
This editorial presents results of the MANA (MANagement of Atolls) project compiled in the form of a Marine Pollution Bulletin collection of 14 articles. MANA is a project funded by the French Agence National pour la Recherche that specifically addresses the development of knowledge and management tools for pearl farming atolls, with a focus on the spat collecting activity in French Polynesia. The 14 papers cover the range of thematic tasks described in the initial project, including atoll geomorphology and bathymetry, climate forcing, atoll lagoon and rim hydrodynamics, typology of atolls, evaluation of remote sensing data for monitoring atoll lagoons, and development of numerical models and spatially-explicit tools that altogether have contributed to the applied objectives. In addition, this editorial draws an update on the pearl farming industry in French Polynesia with the latest statistics, and discusses the next targeted priorities for research programs focusing on pearl farming atolls.
显示更多 [+] 显示较少 [-]The MANA (MANagement of Atolls, 2017–2022) project for pearl oyster aquaculture management in the Central Pacific Ocean using modelling approaches: Overview of first results 全文
2022
Andréfouët, Serge | Lo-Yat, Alain | Lefebvre, Sebastien | Bionaz, Océane | Liao, Vetea
This editorial presents results of the MANA (MANagement of Atolls) project compiled in the form of a Marine Pollution Bulletin collection of 14 articles. MANA is a project funded by the French Agence National pour la Recherche that specifically addresses the development of knowledge and management tools for pearl farming atolls, with a focus on the spat collecting activity in French Polynesia. The 14 papers cover the range of thematic tasks described in the initial project, including atoll geomorphology and bathymetry, climate forcing, atoll lagoon and rim hydrodynamics, typology of atolls, evaluation of remote sensing data for monitoring atoll lagoons, and development of numerical models and spatially-explicit tools that altogether have contributed to the applied objectives. In addition, this editorial draws an update on the pearl farming industry in French Polynesia with the latest statistics, and discusses the next targeted priorities for research programs focusing on pearl farming atolls.
显示更多 [+] 显示较少 [-]Periodicity of wave-driven flows and lagoon water renewal for 74 Central Pacific Ocean atolls 全文
2022
Andréfouët, Serge | Desclaux, Terence | Buttin, Julie | Jullien, Swen | Aucan, Jérôme | Le Gendre, Romain | Liao, Vetea
Periodicity of wave-driven flows and lagoon water renewal for 74 Central Pacific Ocean atolls 全文
2022
Andréfouët, Serge | Desclaux, Terence | Buttin, Julie | Jullien, Swen | Aucan, Jérôme | Le Gendre, Romain | Liao, Vetea
French Polynesia atolls are spread on a vast 2300 by 1200 km Central Pacific Ocean area exposed to spatially and temporally dependent wave forcing. They also have a wide range of closed to open morphologies and several have been suitable to develop from black-lipped pearl oysters a substantial pearl farming activity in the past 30 years, representing nowadays the 2nd source of income for French Polynesia. Considering here only the component of lagoon renewal that is driven by waves, we investigate for 74 atolls different lagoon renewal metrics using 20 years of wave model data at 0.05° spatial resolution. Wavelet spectral analyses highlight that atolls, even in close vicinity, can be exposed to different and characteristic periodicities in wave-driven flows and water renewal. These characteristics are discussed in relation to pearl farming atolls, including atolls known to be efficient oyster spat producers, a critical activity for pearl farming sustainability.
显示更多 [+] 显示较少 [-]Periodicity of wave-driven flows and lagoon water renewal for 74 Central Pacific Ocean atolls 全文
2022
Andréfouët, Serge | Desclaux, Terence | Buttin, Julie | Jullien, Swen | Aucan, Jérôme | Le Gendre, Romain | Liao, Vetea
French Polynesia atolls are spread on a vast 2300 by 1200 km Central Pacific Ocean area exposed to spatially and temporally dependent wave forcing. They also have a wide range of closed to open morphologies and several have been suitable to develop from black-lipped pearl oysters a substantial pearl farming activity in the past 30 years, representing nowadays the 2nd source of income for French Polynesia. Considering here only the component of lagoon renewal that is driven by waves, we investigate for 74 atolls different lagoon renewal metrics using 20 years of wave model data at 0.05° spatial resolution. Wavelet spectral analyses highlight that atolls, even in close vicinity, can be exposed to different and characteristic periodicities in wave-driven flows and water renewal. These characteristics are discussed in relation to pearl farming atolls, including atolls known to be efficient oyster spat producers, a critical activity for pearl farming sustainability.
显示更多 [+] 显示较少 [-]A large diversity of organohalogen contaminants reach the meso- and bathypelagic organisms in the Bay of Biscay (northeast Atlantic) 全文
2022
Munschy, Catherine | Spitz, J. | Bely, Nadege | Héas-moisan, Karine | Olivier, Nathalie | Pollono, Charles | Chouvelon, Tiphaine
A large diversity of organohalogen contaminants reach the meso- and bathypelagic organisms in the Bay of Biscay (northeast Atlantic) 全文
2022
Munschy, Catherine | Spitz, J. | Bely, Nadege | Héas-moisan, Karine | Olivier, Nathalie | Pollono, Charles | Chouvelon, Tiphaine
Deep-sea ecosystems play a key role in the cycling and vertical transfer of matter and energy in oceans. Although the contamination of deep-sea demersal and benthic organisms by persistent organic pollutants has been proven, deep pelagic species have been far less studied. To fill these gaps, we studied the occurrence of a large variety of hydrophobic organic contaminants including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), legacy and alternative brominated flame retardants (BFRs) and per- and polyfluoroalkyl substances (PFASs) in crustaceans and fish species collected in the Bay of Biscay, northeast Atlantic. The results highlighted the global predominance of PCBs in fish, followed by OCPs, PFASs and PBDEs, with highly variable concentrations among species. Most of the chlorinated or brominated contaminants showed increasing concentrations with increasing δ15N values, while most PFASs showed inverse trends. The contaminant profiles and diagnostic ratios revealed species-specific metabolic capacities and peculiar contribution of highly-brominated BFRs.
显示更多 [+] 显示较少 [-]A large diversity of organohalogen contaminants reach the meso- and bathypelagic organisms in the Bay of Biscay (northeast Atlantic) 全文
2022
Munschy, C. | Spitz, J. | Bely, N. | Héas-Moisan, K. | Olivier, N. | Pollono, C. | Chouvelon, T.
Deep-sea ecosystems play a key role in the cycling and vertical transfer of matter and energy in oceans. Although the contamination of deep-sea demersal and benthic organisms by persistent organic pollutants has been proven, deep pelagic species have been far less studied. To fill these gaps, we studied the occurrence of a large variety of hydrophobic organic contaminants including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), legacy and alternative brominated flame retardants (BFRs) and per- and polyfluoroalkyl substances (PFASs) in crustaceans and fish species collected in the Bay of Biscay, northeast Atlantic. The results highlighted the global predominance of PCBs in fish, followed by OCPs, PFASs and PBDEs, with highly variable concentrations among species. Most of the chlorinated or brominated contaminants showed increasing concentrations with increasing δ¹⁵N values, while most PFASs showed inverse trends. The contaminant profiles and diagnostic ratios revealed species-specific metabolic capacities and peculiar contribution of highly-brominated BFRs.
显示更多 [+] 显示较少 [-]A Large Diversity of Organohalogen Contaminants Reach the Meso- and Bathypelagic Organisms in the Bay of Biscay (Northeast Atlantic) 全文
2022
Munschy, Catherine | Spitz, Jérôme | Bely, Nadège | Héas-Moisan, Karine | Olivier, Nathalie | Pollono, Charles | Chouvelon, Tiphaine | Unité Contamination Chimique des Ecosystèmes Marins (CCEM) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Observatoire pour la Conservation de la Mégafaune Marine (PELAGIS) ; LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
International audience | Oceanic and deep-sea ecosystems play a key role in the cycling and vertical transfer of matter and energy in oceans. Their pelagic communities act as major components sustaining higher trophic level predators. Despite their location far from direct anthropogenic sources, deep-sea organism contamination by persistent organic pollutants has been proven, especially in demersal and benthic species. However, deep pelagic species have been far less studied, without mentioning contaminants of emerging concern. To fill these gaps, we studied the occurrence of a large variety of hydrophobic organic contaminants including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), various brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) and their replacement substances BTBPE (1,2-bis(2,4,6-tribromophenoxy)ethane) and DBDPE (decabromodiphenylethane), and finally per- and polyfluoroalkyl substances (PFASs) in crustaceans and fish species collected in the deep pelagic waters of the Bay of Biscay, northeast Atlantic. The results highlighted the global predominance of PCBs (detection frequencies and concentrations) in fish, with mean concentrations of 54.42 ± 28.57 ng g -1 dry weight (dw), followed by OCPs (21.73 ± 21.26 ng g -1 dw), PFASs (11.95 ± 9.58 ng g -1 dw) and PBDEs (mean of 1.50 ± 1.12 ng g -1 dw). The concentrations showed moderate intra-species variability (21–38%) but were highly variable among species (43–87%). Total lipid contents were also highly variable (from 4.3% ± 0.9% to 51% dw in crustaceans and from 6.1% ± 0.1% to 41.9% ± 9.6% dw for fish) and showed little correlation with lipophilic contaminant concentrations. Most of the chlorinated or brominated contaminants showed increasing concentrations with increasing δ15N values, while most PFASs showed inverse trends. Hexa/heptachlorinated PCBs, DDTs and BDE-209 were the predominant compounds among chlorinated and brominated contaminants, while long-chain perfluorocarboxylic acids (PFCAs) prevailed among PFASs in most species. The contaminant profiles and diagnostic ratios revealed species-specific metabolic capacities.
显示更多 [+] 显示较少 [-]Selective pressure on microbial communities in a drinking water aquifer – Geochemical parameters vs. micropollutants 全文
2022
Aldas-Vargas, Andrea | Hauptfeld, Ernestina | Hermes, Gerben D.A. | Atashgahi, Siavash | Smidt, Hauke | Rijnaarts, Huub H.M. | Sutton, Nora B.
Groundwater quality is crucial for drinking water production, but groundwater resources are increasingly threatened by contamination with pesticides. As pesticides often occur at micropollutant concentrations, they are unattractive carbon sources for microorganisms and typically remain recalcitrant. Exploring microbial communities in aquifers used for drinking water production is an essential first step towards understanding the fate of micropollutants in groundwater. In this study, we investigated the interaction between groundwater geochemistry, pesticide presence, and microbial communities in an aquifer used for drinking water production. Two groundwater monitoring wells in The Netherlands were sampled in 2014, 2015, and 2016. In both wells, water was sampled from five discrete depths ranging from 13 to 54 m and was analyzed for geochemical parameters, pesticide concentrations and microbial community composition using 16S rRNA gene sequencing and qPCR. Groundwater geochemistry was stable throughout the study period and pesticides were heterogeneously distributed at low concentrations (μg L−1 range). Microbial community composition was also stable throughout the sampling period. Integration of a unique dataset of chemical and microbial data showed that geochemical parameters and to a lesser extent pesticides exerted selective pressure on microbial communities. Microbial communities in both wells showed similar composition in the deeper aquifer, where pumping results in horizontal flow. This study provides insight into groundwater parameters that shape microbial community composition. This information can contribute to the future implementation of remediation technologies to guarantee safe drinking water production.
显示更多 [+] 显示较少 [-]Subtle ecosystem effects of microplastic exposure in marine mesocosms including fish 全文
2022
Foekema, Edwin M. | Keur, Martijn | Van Der Vlies, Liesbeth | Van Der Weide, Babeth | Bittner, Oliver | Murk, Albertinka J.
For two months, communities in 5.8 m3 outdoor marine mesocosms were exposed to 700 μm sphere-shaped polystyrene (PS) beads in dosages between 0.08 and 80 g/m2 . Barnacle (Semibalanus balanoides) densities were reduced at dosages of 0.8 g/m2 onwards without following a standard dose response curve. Lugworms and fish (Solea solea) ingested PS-beads without accumulating them. Lugworms (Arenicola marina) ingested the beads nonselective with the sediment without negative effects. The fish seemed to ingest the plastics only occasionally and at the final sampling day even in the highest dosed mesocosms (>30 beads/cm2) only 20% contained plastic. The condition index of the fish was slightly reduced in mesocosms with dosages of 0.8 g/m2 onwards. No difference in condition was found between fish with and without ingested plastic across mesocosms, illustrating the difficulty to relate plastic ingestion with condition from field data. The fish also ingested mollusks with shells exceeding the size of the PS-beads. Bivalves rejected the PS-beads as pseudofeces, without obvious impact on their condition. Mussel’s (Mytilus edulis) pseudofeces present an effective matrix to monitor microplastic presence in the water column. Species richness and diversity of the pelagic and benthic community were not affected although, a trend was found that the lower microplastic dosages had a positive effect on the total abundance of benthic invertebrates. In general, the observed effects at even the highest exposure concentrations were that subtle that they will be obscured by natural variation in the field. This underlines the importance of experiments under semi-field conditions for meaningful assessment of the ecological impact of microplastics. This study was performed with the real life, non-toxic, sphere-shaped polystyrene beads as were lost during an actual spill near the Dutch Wadden sea in January 2019. We recommend future mesocosm studies with other types of microplastics, including microfibers, weathered microplastics from sea, and smaller sized particles down to nanoplastics.
显示更多 [+] 显示较少 [-]Toxicological impact of environmental microplastics and benzo[a]pyrene in the seaworm Hediste diversicolor under environmentally relevant exposure conditions 全文
2022
Abouda, Siwar | Missawi, Omayma | Cappello, Tiziana | Boughattas, Iteb | De Marco, Giuseppe | Maisano, Maria | Banni, Mohamed
Nowadays, marine ecosystems are under severe threat from the simultaneous presence of multiple stressors, including microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P). In addition to their presence in various marine compartments, there are increasing concerns on the potential capacity of MPs to sorb, concentrate and transfer these pollutants in the environment. Although their ecotoxicological impacts are currently evident, few works have studied the combined effects of these contaminants. Therefore, the major purpose of this work was to assess the toxicity of environmental relevant concentrations of MPs (<30 μm) and B[a]P, alone and in mixture, in the seaworm Hediste diversicolor by exploring their accumulation and hazardous biological effects for 3 and 7 days. Environmental MPs were able to increase B[a]P in a time-dependent manner. The obtained results showed that individual treatments, as well as co-exposure to contaminants, caused cytotoxicity and genotoxicity in the cœlomic fluid cells, while oxidative stress effects were observed at tissue and gene levels associated with alteration in neurotransmission. Overall, our findings provide additional clues about MPs as organic pollutant vectors in the marine environment, and contribute to a clearer understanding of their toxicological risk to aquatic invertebrates.
显示更多 [+] 显示较少 [-]Natural colloids at environmentally relevant concentrations affect the absorption and removal of benzophenone-3 in zebrafish 全文
2022
Sun, Yu | Lü, Guanghua | Zhang, Peng | Wang, Ying | Ling, Xin | Xue, Qi | Yan, Zhenhua | Liu, Jianchao
Aquatic natural colloids are closely related to the environmental behavior of pollutants, which may affect their bioavailability in aquatic organisms. This study explored the potential mechanisms of the natural colloids at environmentally relevant concentrations affecting the bioaccumulation process of benzophenone-3 (BP3) in zebrafish (Danio rerio). The results of kinetic model fitting showed that the natural colloids decreased the uptake and loss rate of BP3 by zebrafish but prolonged the time to reach the cumulative equilibrium, eventually resulting in a higher cumulative concentration in zebrafish. According to the tissue concentration at equilibrium and the results of toxicokinetic analysis, the presence of high molecular colloids could enhance the bioaccumulation of freely dissolved BP3 due to its high desorption rate with BP3 in the intestines of fish, increasing the freely dissolved BP3 concentrations to which zebrafish were exposed. Both natural colloids and BP3 could enhance the cell permeability of zebrafish, which allowed colloid-bound BP3 to directly enter the fish and accumulate in its muscle. Besides, although both natural colloids and BP3 could cause the metabolic disorders in adult zebrafish, they affected the physiological and biochemical activities of zebrafish through different pathways. The disturbance of glutathione metabolism in zebrafish induced by natural colloids may be the reason for the diminished ability of zebrafish to clear and transform BP3 in the mixture system. The carrier effect of natural colloids and reduced clearance ability of zebrafish eventually increased the bioaccumulation of BP3 in zebrafish. This study highlights the significance of natural colloids at environmentally relevant concentrations on the biological effects of emerging contaminants in actual waters, however, natural colloids are always ignored in most field investigation of pollutants, which would ultimately lead to an underestimation of the true ecological risk of pollutants.
显示更多 [+] 显示较少 [-]Combined maize straw-biochar and oxalic acids induced a relay activity of abundant specific degraders for efficient phenanthrene degradation: Evidence based on the DNA-SIP technology 全文
2022
Li, Xiaona | Yao, Shi | Bolan, Nanthi | Wang, Zhenyu | Jiang, Xin | Song, Yang
Biochar-oxalic acid composite application (BCOA) have shown to be efficient in the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil, but the functional degraders and the mechanism of improving biodegradation remains unclear. In this study, with the help of stable isotope probing technology of phenanthrene (Phe), we determined that BCOA significantly improved Phe mineralization by 2.1 times, which was ascribed to the increased numbers and abundances of functional degraders. The BCOA increased contents of dissolved organic carbon and available nutrients and decreased pH values in soil, thus promoting the activity, diversity and close cooperation of the functional Phe-degraders, and stimulating their functions associated with Phe degradation. In addition, there is a relay activity among more and diverse functional Phe-degraders in the soil with BCOA. Specifically, Pullulanibacillus persistently participated in Phe-degradation in the soil with BCOA throughout the incubation period. Moreover, Pullulanibacillus, Blastococcus, Alsobacter, Ramlibacter, and Mizugakiibacter were proved to be potential Phe-degraders in soil for the first time. The specific Phe degraders and their relay and cooperation activity in soils as impacted by BCOA were first identified with DNA-stable isotope probing technology. Our findings provided a novel perspective to understand the efficient degradation of PAH in the BCOA treatments, revealed the potential of soil native microbes in the efficient bioremediation of PAH-contaminated natural soil, and provided a basis for the development of in-situ phytoremediation technologies to remediate PAH pollution in future.
显示更多 [+] 显示较少 [-]