细化搜索
结果 1961-1970 的 3,208
Large-scale monitoring and assessment of metal contamination in surface water of the Selenga River Basin (2007–2009) 全文
2015
Nadmitov, Bulat | Hong, Seongjin | In Kang, Sang | Chu, Jang Min | Gomboev, Bair | Janchivdorj, Lunten | Lee, Chang Hee | Khim, Jong Seong
An extensive and year-round survey was conducted to assess metal pollution in vast watershed areas of the Selenga River Basin (2007–2009), which provided baseline heavy metal database for the future management. Sources and environmental hazard and risk indices associated with metal pollution were evidenced across the countries of Mongolia and Russia (Buryatia Republic). In general, the concentrations of heavy metals in river water of Mongolia were greater than those of Russia, expect for the upstream of the Dzhida River in Russia. The spatial distribution generally indicated that metal pollution in the Selenga River was mainly associated with the activities in the Mongolian upstream regions. Similar pollution sources of metals between river water and wastewater associated with surrounding activities were found across the industrial and mining areas. Compositional patterns of metals suggested their sources were independent of each other, with hot spots in certain sites. Our measurements indicated that about 63 % of the locations surveyed (48 of 76) exceeded the critical heavy metal pollution index of 100, identifying possible harmful effects on aquatic ecosystems through metal pollution. Zinc was found to be the chemical of priority concern, as more than half of the locations exceeded the corresponding water quality guideline. Other metals including Mn, Fe, Cr, Cu, and As might be problematic in the Selenga River Basin considering the occurrence and their concentrations. Results of our extensive survey during the period of 3 years indicated that urgent action would be necessary in timely manner to improve water quality and mitigate the impact of heavy metals on aquatic environment of the Selenga River Basin.
显示更多 [+] 显示较少 [-]Heavy metal concentrations in the small intestine of red fox (Vulpes vulpes) with and without Echinococcus multilocularis infection 全文
2015
Brožová, Adela | Jankovská, Ivana | Miholová, Daniela | Scháňková, Štěpánka | Truněčková, Jana | Langrová, Iva | Kudrnáčová, Marie | Vadlejch, Jaroslav
Heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) levels in red fox small intestine samples with or without Echinococcus multilocularis infection were studied. The red foxes were taken from the open countryside of northwest Bohemia (CR). Red foxes with E. multilocularis infection had lower levels of toxic metals (Cd, Pb); cadmium levels in infected foxes (0.0052 mg/kg) were twice as low as in uninfected foxes (0.0106 mg/kg). This was the same case for lead: 0.0288 mg/kg infected red foxes (inf.) and 0.0413 mg/kg uninfected (uninf.). Conversely, red foxes with E. multilocularis infection yielded higher concentrations in comparison to their uninfected counterparts: Cr (0.0087 mg/kg uninf. and 0.0116 mg/kg inf.), Cu (0.2677 mg/kg uninf. and 0.3205 mg/kg inf.), Fe (6.46 mg/kg uninf. and 10.89 mg/kg inf.), Mn (0.1966 mg/kg uninf. and 0.2029 mg/kg inf.), Ni (0.0415 mg/kg uninf. and 0.064 mg/kg inf.) and Zn (16.71 mg/kg uninf. and 20.25 mg/kg inf). This could support the hypothesis that tapeworms are able to absorb toxic heavy metals from the host body into their tissues, as well as to modify other element concentrations in the host body.
显示更多 [+] 显示较少 [-]Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa 全文
2015
Lin, Li | Feng, Cong | Li, Qingyun | Wu, Min | Zhao, Liangyuan
Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa were investigated in order to reveal the mechanisms of electrolytic inhibition of algae. Threshold of current density was found under a certain initial no. of algae cell. When current density was equal to or higher than the threshold (fixed electrolysis time), growth of algae was inhibited completely and the algae lost the ability to survive. Effect of algal solution volume on algal inhibition was insignificant. Thresholds of current density were 8, 10, 14, 20, and 22 mA cm⁻² at 2.5 × 10⁷, 5 × 10⁷, 1 × 10⁸, 2.5 × 10⁸, and 5 × 10⁸ cells mL⁻¹ initial no. of algae cell, respectively. Correlativity between threshold of current and initial no. of algae cells was established for scale-up and determining operating conditions. Changes of chlorophyll fluorescence parameters demonstrated that photosystem (PS) II of algae was damaged by electrolysis but still maintained relatively high activity when algal solution was treated by current densities lower than the threshold. The activity of algae recovered completely after 6 days of cultivation. On the contrary, when current density was higher than the threshold, connection of phycobilisome (PBS) and PS II core complexes was destroyed, PS II system of algae was damaged irreversibly, and algae could not survive thoroughly. The inactivation of M. aeruginosa by electrolysis can be attributed to irreversible separation of PBS from PS II core complexes and the damage of PS II of M. aeruginosa.
显示更多 [+] 显示较少 [-]Impact of a phosphate fertilizer plant on the contamination of marine biota by heavy elements 全文
2015
Aoun, Maria | Arnaudguilhem, Carine | El Samad, Omar | Khozam, Rola Bou | Łobiński, Ryszard
Due to their toxicity, persistence, and bioaccumulation, metals are important marine environment pollutants, especially in low renewal rate water such as the Mediterranean Sea, receiving a lot of untreated industrial waste. The impact of a phosphate fertilizer plant on the marine biota metal contamination was studied. Several types of organisms: crabs, mussels, patella and fish were collected from two areas of the Lebanese coast, one subjected to the impact of the plant and another away from it; samples were analyzed for Zn, U, Cr, V, Mn, Ni, Co, Cu, As, Cd and Pb by ICP-MS. Higher accumulation was in crabs, patella, and mussels. Fish accumulated principally Zn, Cu, and Cd; a difference was observed between species and tissues. Cytosol metal fractionation using size-exclusion LC-ICP-MS showed principally Pb, As, Co, and Mn in the low molecular weight fraction (<1.8 Da); Cd, Zn, and Cu in the metallothionein fraction (1.8–-18 k Da), and Ni in high molecular weight fraction (>20 kDa).
显示更多 [+] 显示较少 [-]Comparison of carbon balance in Mediterranean pilot constructed wetlands vegetated with different C4 plant species 全文
2015
Barbera, Antonio C. | Borin, Maurizio | Cirelli, Giuseppe L. | Toscano, Attilio | Maucieri, Carmelo
This study investigates carbon dioxide (CO₂) and methane (CH₄) emissions and carbon (C) budgets in a horizontal subsurface flow pilot-plant constructed wetland (CW) with beds vegetated with Cyperus papyrus L., Chrysopogon zizanioides (L.) Roberty, and Mischantus × giganteus Greef et Deu in the Mediterranean basin (Sicily) during the 1st year of plant growing season. At the end of the vegetative season, M. giganteus showed the higher biomass accumulation (7.4 kg m⁻²) followed by C. zizanioides (5.3 kg m⁻²) and C. papyrus (1.8 kg m⁻²). Significantly higher emissions of CO₂were detected in the summer, while CH₄emissions were maximum during spring. Cumulative CO₂emissions by C. papyrus and C. zizanioides during the monitoring period showed similar trends with final values of about 775 and 1,074 g m⁻², respectively, whereas M. giganteus emitted 3,395 g m⁻². Cumulative CH₄bed emission showed different trends for the three C4 plant species in which total gas release during the study period was for C. papyrus 12.0 g m⁻²and ten times higher for M. giganteus, while C. zizanioides bed showed the greatest CH₄cumulative emission with 240.3 g m⁻². The wastewater organic carbon abatement determined different C flux in the atmosphere. Gas fluxes were influenced both by plant species and monitored months with an average C-emitted-to-C-removed ratio for C. zizanioides, C. papyrus, and M. giganteus of 0.3, 0.5, and 0.9, respectively. The growing season C balances were positive for all vegetated beds with the highest C sequestered in the bed with M. giganteus (4.26 kg m⁻²) followed by C. zizanioides (3.78 kg m⁻²) and C. papyrus (1.89 kg m⁻²). To our knowledge, this is the first paper that presents preliminary results on CO₂and CH₄emissions from CWs vegetated with C4 plant species in Mediterranean basin during vegetative growth.
显示更多 [+] 显示较少 [-]Community structure and nutrient level control the tolerance of autotrophic biofilm to silver contamination 全文
2015
Leflaive, J. | Felten, V. | Ferriol, J. | Lamy, A. | Ten-Hage, L. | Bec, A. | Danger, M.
Autotrophic biofilms are complex and fundamental biological compartments of many aquatic ecosystems. Since microbial species differ in their sensitivity to stressors, biofilms have long been proposed for assessing the quality of aquatic ecosystems. Among the many stressors impacting aquatic ecosystems, eutrophication and metal pollution are certainly the most common. Despite that these stressors often occur together, their effects on biofilms have been far much studied separately than interactively. In this study, we evaluated the interactive effects of silver (Ag), a reemerging contaminant, and phosphorus (P), a nutrient often associated with freshwater eutrophication, on the structure and functioning of two types of autotrophic biofilms, one dominated by diatoms and another one dominated by cyanobacteria. We hypothesized that P would alleviate the toxic effects of Ag, either directly, through the contribution of P in metal detoxification processes, or indirectly, through P-mediated shifts in biofilm community compositions and associated divergences in metal tolerance. Results showed that Ag impacted biofilm community structure and functioning but only at unrealistic concentrations (50 μg/L). P availability led to significant shifts in biofilm community composition, these changes being more pronounced in diatom- than those in cyanobacteria-dominated biofilm. In addition, P tended to reduce the impact of Ag but only for the cyanobacteria-dominated biofilm. More generally, our results highlight the preponderant role of the initial community structure and nutrient level on biofilm response to metallic pollutants.
显示更多 [+] 显示较少 [-]Emerging and priority contaminants with endocrine active potentials in sediments and fish from the River Po (Italy) 全文
2015
Luigi, Viganò | Giuseppe, Mascolo | Claudio, Roscioli
There is a substantial lack of information on most priority pollutants, related contamination trends, and (eco)toxicological risks for the major Italian watercourse, the River Po. Targeting substances of various uses and origins, this study provides the first systematic data for the River Po on a wide set of priority and emerging chemicals, all characterized by endocrine-active potentials. Flame retardants, natural and synthetic hormones, surfactants, personal care products, legacy pollutants, and other chemicals have been investigated in sediments from the River Po and its tributary, the River Lambro, as well as in four fish species from the final section of the main river. With few exceptions, all chemicals investigated could be tracked in the sediments of the main Italian river for tens or hundreds of kilometres downstream from the Lambro tributary. Nevertheless, the results indicate that most of these contaminants, i.e., TBBPA, TCBPA, TBBPA-bis, DBDPE, HBCD, BPA, OP, TCS, TCC, AHTN, HHCB, and DDT, individually pose a negligible risk to the River Po. In contrast, PBDE, PCB, natural and synthetic estrogens, and to a much lower extent NP, were found at levels of concern either to aquatic life or human health. Adverse biological effects and prohibition of fish consumption deserve research attention and management initiatives, also considering the transport of contaminated sediments to transitional and coastal environments of the Italian river.
显示更多 [+] 显示较少 [-]Ecological, morphological, and histological studies on Blaps polycresta (Coleoptera: Tenebrionidae) as biomonitors of cadmium soil pollution 全文
2015
Osman, Wafaa | M. El-Samad, Lamia | Mokhamer, EL-Hassan | El-Touhamy, Aya | Shonouda, Mourad
Soil pollution in Egypt became far more serious than before due to either the heavy usage of different toxic pesticides or aerosol deposition of industrial pollutants. The present mentioned ground beetle, Blaps polycresta Tschinkel 1975 (Coleoptera: Tenebrionidae), showed ecological, morphological, and histological alterations in adult insects as biomonitors. Two cultivated sites (reference and polluted) were chosen for sampling the insects. The results indicated a significant increase in soil cadmium concentration of the polluted site leading to sex-specific difference in cadmium accumulation in gonads and alimentary canal of insects that being higher in males than females. The cadmium pollution leads significantly to a decrease in population density, a reduction in body weight, an increase in mortality rate, and an increase in sex ratio of the insects. The results also revealed a striking decrease in body length of the polluted insects with a marked increase in the percentage of deformed gonads and alimentary canal of both sexes. Some histopathological alterations were also recorded in testis, ovary, and midgut of the polluted insects. Our results confirmed that beetles are a good bioindicator for soil pollution, and the different studied parameters could be easily employed as sensitive monitors for cadmium soil pollution.
显示更多 [+] 显示较少 [-]Threats to water resources from hexachlorobenzene waste at Kalush City (Ukraine)—a review of the risks and the remediation options 全文
2015
Lysychenko, Georgii | Weber, Roland | Kovach, Valeria | Gertsiuk, Modest | Watson, Alan | Krasnova, Iryna
The production of chlorinated solvents such as tetrachloroethylene and tetrachloromethane has resulted in large stockpiles of unintentionally produced persistent organic pollutants (POPs) including high content of hexachlorobenzene (HCB waste). HCB waste of 15,000 t arising from the production of chlorinated solvents at the Kalush factory in Ukraine was landfilled. In 2008, it was discovered that HCB and other pollutants were escaping from the landfill into local environment including the Sapogi–Limnytsia Rivers, tributaries of the Dniester River. This showed that the HCB waste was not appropriately contained and represented a threat to the Dniester River basin. A Presidential Decree of Ukraine was therefore issued requiring remediation of the site and excavation of the waste. Between 2010 and 2013, approximately 29,445 t of HCB waste and associated contaminated soil was excavated and exported to various EU countries for incineration. This excavation revealed that these wastes can corrode through their drums within a few decades with release of pollutants. Other sites at which chlorinated solvents were produced should therefore be assessed for possible similar pollution. Despite the remediation efforts and the excavation of the landfill, the Kalush area remains a POP-contaminated site requiring further assessment. A part of the waste was exported to Poland and is stored close to the Baltic Sea and is treated in an incinerator with small capacity over a time frame of years. This case and recent similar cases reveal that the control of POP waste for destruction even in EU countries needs to be improved.
显示更多 [+] 显示较少 [-]The pollution intensity of Australian power stations: a case study of the value of the National Pollutant Inventory (NPI) 全文
2015
Tang, Minmeng | Mudd, Gavin M.
This paper presents a comprehensive analysis of the pollutant emissions from electrical generation facilities reported to Australia’s National Pollutant Inventory (NPI). The data, in terms of pollutant intensity with respect to generation capacity and fuel source, show significant variability. Based on reported data, the dominant pathway and environmental segment for emissions is point-source air emissions. Surprisingly, pollutant emissions from power stations are generally a very small fraction of Australia’s facility and diffuse emissions, except for F, HCl, NOₓ, PM₂.₅, SO₂ and H₂SO₄ (where it constitutes between 30 and 90 % of emissions). In general, natural gas and diesel facilities have higher organic pollutant intensities, while black and brown coal have higher metal/metalloid pollutant intensities and there is a wide variability for inorganic pollutant intensities. When examining pollutant intensities with respect to capacity, there is very little evidence to show that increased scale leads to more efficient operation or lower pollutant intensity. Another important finding is that the pollutant loads associated with transfers and reuse are substantial, and often represent most of the reported pollutants from a given generation facility. Finally, given the issues identified with the NPI data and its use, some possible improvements include the following: (i) linking site generation data to NPI data (especially generation data, i.e., MWh); (ii) better validation and documentation of emissions factors, especially the methods used to derive and report estimates to the NPI; (iii) using NPI data to undertake comparative life cycle impact assessment studies of different power stations and fuel/energy sources, or even intensive industrial regions (especially from a toxicity perspective) and (iv) linking NPI data in a given region to ongoing environmental monitoring, so that loads can be linked to concentrations for particular pollutants and the relevant guidelines (e.g., air, water, human health). Pollutant inventory systems are clearly valuable tools in understanding pollution burdens and ongoing analysis of the growing body of data should help to further improve environmental and public health outcomes. Overall, this study provides a valuable insight into the current status of pollutant intensities from Australia’s electrical generation facilities and should be a valuable benchmark for future studies and international comparisons.
显示更多 [+] 显示较少 [-]