细化搜索
结果 251-260 的 7,200
Potential hot spots contaminated with exogenous, rare earth elements originating from e-waste dismantling and recycling 全文
2022
Wang, Siyu | Xiong, Zhunan | Wang, Lingqing | Yang, Xiao | Yan, Xiulan | Li, You | Zhang, Chaosheng | Liang, Tao
Dismantling and recycling e-waste has been recognized as a potential emission source of rare earth elements (REEs). However, the presence of REEs in typical regional soils has yet to be studied. Given the potential health implications of such soil contamination, it is vital to study the characteristics, spatial distribution, and pollution level of REEs caused by e-waste dismantling as well as determine the influencing mechanism. This study focused on Guiyu Town as an example site, which is a typical e-waste dismantling base. From the site, 39 topsoil samples of different types were collected according to grid distribution points. Soil profiles were also collected in the dismantling and non-dismantling areas. The REE characteristic parameters showed that the REE distribution was abnormal and was affected by multiple factors. The results of the integrated pollution index showed that approximately 61.5% of soil samples were considered to be lightly polluted. Spatial distribution and correlation analysis showed that hot spots of REE-polluted soil coincided with known, main pollution sources. Moreover, there was a significant negative correlation (p ≤0.05) between the REE concentration and the distance from the pollution source. E-waste disassembly and recycling greatly affect the physical and chemical properties of the surrounding soil as well as downward migration areas. In the disassembly area, REE accumulated more easily in the surface layer (0–20 cm). Geographical detector results showed that distance factor was the main contribution factor for both light rare earth elements (LREE) and heavy rare earth element (HREE) (q = 34.59% and 53.33%, respectively). REE distribution in soil was nonlinear enhanced by different factors. Taken together, these results showed that e-waste disassembling and recycling not only directly affected the spatial distribution of REEs, but that their distribution was also affected by land use type and soil properties.
显示更多 [+] 显示较少 [-]Metagenomic analysis reveals the diversity and distribution of antibiotic resistance genes in thermokarst lakes of the Yellow River Source Area 全文
2022
Ren, Ze | Luo, Wei
Thermokarst lakes form as the results of ice-rich permafrost thawing and act as important water resources in cold regions. However, the distributions of antibiotic resistance genes (ARGs) in thermokarst lakes are far less studied. Using metagenomic sequencing approach, we provided the first study to document ARGs in thermokarst lakes of the Yellow River Source Area on the Qinghai-Tibet Plateau (QTP). The results revealed that both sediment and water of the thermokarst lakes harbor diverse ARGs. Multidrug resistance genes were the most diverse, while rifamycin resistance genes were the most abundant with rpoB2 and rpoB genes having the highest proportion. Sediment samples contained more ARGs than water samples, but their composition differed between the two types of samples. However, the composition variations of sediment and water ARGs were closely correlated. The Sorensen dissimilarities of ARGs were controlled by strong turnover processes in sediment samples, and by turnover and nestedness in water samples. High contributions of nestedness were found between sediment and water samples. Moreover, ARGs in water had more significant relationships with environmental variables than that in sediment. Given the role of thermokarst lakes as important water resources in permafrost landscape, as well as intensifying influences of climate change and anthropogenetic activities, thermokarst lakes could bring potential ARG risks, warranting further investigation and evaluation.
显示更多 [+] 显示较少 [-]Source and distribution characteristics of 239, 240, 241Pu, 237Np and 134, 137Cs in sediments in the Northwest and Central Equatorial Pacific after the Fukushima nuclear accident 全文
2022
Wang, Fenfen | Zheng, Jian | Aono, Tatsuo | Pan, Shaoming | Men, Wu
To understand the possible influence of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident on the deep sea, as well as the geochemical behavior and transport of radionuclides, ¹³⁴Cs, ¹³⁷Cs, ²³⁹, ²⁴⁰Pu, ²⁴¹Pu, and ²³⁷Np were measured in the abyssal sediments of the Northwest Pacific (NWP) and Central Equatorial Pacific (CEP) Ocean. Data on the characteristics of these sediments obtained after the FDNPP accident are extremely rare, especially in the NWP subtropical gyre (NPSG) region. FDNPP-derived radio-Cs (¹³⁴Cs, ¹³⁷Cs) arrived at the open sea floor of the NWP before 2018 but was only found in the Kuroshio-Oyashio Extension (KOE) region. No FDNPP-derived Pu was detected in the abyssal sediments of the NWP or CEP. Pu in the NWP mainly originated from global fallout and the Pacific Proving Ground (PPG) close-in fallout, except for at station WP1 (39°N in the KOE region), where an abnormal but non-FDNPP-derived Pu signal was detected. Pu in the eastern CEP sediment was less affected by the PPG close-in fallout from the Marshall Islands and was mainly derived from global fallout, with some close-in fallout from the Johnston Atoll test. The KOE region was the area most affected by PPG close-in fallout Pu via Kuroshio transport, while the lowest inventories of ²³⁹⁺²⁴⁰Pu and ²³⁷Np were found in the NPSG region due to its oligotrophic environment. The ²³⁷Np originated from the same source as Pu, and the latitudinal pattern of ²³⁷Np was consistent with that of Pu. Station SS (in the marginal sea of the NWP) contained high ²³⁷Np/²³⁹Pu atom ratios in the deeper layers of sediment and had a ²³⁷Np depth profile opposite that of the ²³⁹⁺²⁴⁰Pu profile, compared to other stations; these differences are mainly attributed to differences in the behaviors of ²³⁷Np and ²³⁹Pu.
显示更多 [+] 显示较少 [-]Glyphosate and glufosinate-ammonium in aquaculture ponds and aquatic products: Occurrence and health risk assessment 全文
2022
Yan, Biao | Lei, Lei | Chen, Xiangping | Men, Jun | Sun, Yumiao | Guo, Yongyong | Yang, Lihua | Wang, Qidong | Han, Jian | Zhou, Bingsheng
As the two most commonly used organophosphorus herbicides, glyphosate (Gly) and glufosinate-ammonium (Glu) have unique properties for weed control and algae removal in aquaculture. However, the occurrences and health risks of Gly and Glu in aquaculture ponds are rare known. This study aimed to investigate the occurrences of Gly, AMPA (primary metabolity of Gly) and Glu in surface water, sediment and aquatic products from the grass carp (ctenopharyngodon idella), crayfish (procambarus clarkii) and crab (eriocheir sinensis) ponds around Lake Honghu, the largest freshwater lake in Hubei province, China where aquaculture has become the local pillar industry. Three age groups (children, young adults, middle-aged and elderly) exposure to these compounds through edible aquatic products (muscle) consumption were also assessed by target hazard quotient (THQ) method. The results indicated that Gly, AMPA and Glu were widely occurred in surface water, sediment and organisms in the fish, crayfish and crab ponds. AMPA was more likely to accumulate in the intestine of aquatic products than Gly and Glu. According to the total THQ value (1.04>1), muscle consumption of grass carp may pose potential risk to children.
显示更多 [+] 显示较少 [-]Targeting mitochondrial permeability transition pore ameliorates PM2.5-induced mitochondrial dysfunction in airway epithelial cells 全文
2022
Liang, Yingmin | Chu, Pak Hin | Tian, Linwei | Ho, Kin Fai | Ip, Mary Sau-man | Mak, Judith Choi Wo
Particulate matter with aerodynamic diameter not larger than 2.5 μm (PM₂.₅) escalated the risk of respiratory diseases. Mitochondrial dysfunction may play a pivotal role in PM₂.₅-induced airway injury. However, the potential effect of PM₂.₅ on mitochondrial permeability transition pore (mPTP)-related airway injury is still unknown. This study aimed to investigate the role of mPTP in PM₂.₅-induced mitochondrial dysfunction in airway epithelial cells in vitro. PM₂.₅ significantly reduced cell viability and caused apoptosis in BEAS-2B cells. We also found PM₂.₅ caused cellular and mitochondrial morphological alterations, evidenced by the disappearance of mitochondrial cristae, mitochondrial swelling, and the rupture of the outer mitochondrial membrane. PM₂.₅ induced mPTP opening via upregulation of voltage-dependent anion-selective channel (VDAC), leading to deprivation of mitochondrial membrane potential, increased mitochondrial reactive oxygen species (ROS) generation and intracellular calcium level. PM₂.₅ suppressed mitochondrial respiratory function by reducing basal and maximal respiration, and ATP production. The mPTP targeting compounds cyclosporin A [CsA; a potent inhibitor of cyclophilin D (CypD)] and VBIT-12 (a selective VDAC1 inhibitor) significantly inhibited PM₂.₅-induced mPTP opening and apoptosis, and preserved mitochondrial function by restoring mitochondrial membrane potential, reducing mitochondrial ROS generation and intracellular calcium content, and maintaining mitochondrial respiration function. Our data further demonstrated that PM₂.₅ caused reduction in nuclear expressions of PPARγ and PGC-1α, which were reversed in the presence of CsA. These findings suggest that mPTP might be a potential therapeutic target in the treatment of PM₂.₅-induced airway injury.
显示更多 [+] 显示较少 [-]Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics 全文
2022
Kim, HeeSoo | Kim, Mincheol | Kim, Sanghee | Lee, Yung Mi | Shin, Seung Chul
Antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) constitute a serious threat to public health, and climate change has been predicted to affect the increase in bacterial pathogens harboring ARGs and VFGs. However, studies on bacterial pathogens and their ARGs and VFGs in permafrost region have received limited attention. In this study, a metagenomic approach was applied to a comprehensive survey to detect potential ARGs, VFGs, and pathogenic antibiotic resistant bacteria (PARB) carrying both ARGs and VFGs in the active layer and permafrost. Overall, 70 unique ARGs against 18 antimicrobial drug classes and 599 VFGs classified as 38 virulence factors were detected in the Arctic permafrost region. Eight genes with mobile genetic elements (MGEs) carrying ARGs were identified; most MGEs were classified as phages. In the metagenome-assembled genomes, the presence of 15 PARB was confirmed. The soil profile showed that the transcripts per million (TPM) values of ARGs and VFGs in the sub-soil horizon were significantly lower than those in the top soil horizon. Based on the TPM value of each gene, major ARGs, VFGs, and these genes in PARB from the Arctic permafrost region were identified and their distribution was confirmed. The major host bacteria for ARGs and VFGs and PARB were identified. A comparison of the percentage identity distribution of ARGs and VFGs to reference databases indicated that ARGs and VFGs in the Arctic soils differ from previously identified genes. Our results may help understand the characteristics and distribution of ARGs, VFGs, and these genes in PARB in the Arctic permafrost region. This findings suggest that the Arctic permafrost region may serve as potential reservoirs for ARGs, VFGs, and PARB. These genes could pose a new threat to human health if they are released by permafrost thawing owing to global warming and propagate to other regions.
显示更多 [+] 显示较少 [-]Application of gas chromatographic retention times to determine physicochemical properties of nitrated, oxygenated, and parent polycyclic aromatic hydrocarbons 全文
2022
Vuong, Quang Tran | Son, Ji-Min | Thang, Phan Quang | Ohura, Takeshi | Choi, Sung-Deuk
Nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are receiving attention because of their high toxicity compared with parent PAHs. However, the experimental data of their physicochemical properties has been limited. This study proposed the gas chromatographic retention time (GC-RT) technique as an effective alternative one to determine octanol-air partition coefficients (KOA) and sub-cooled liquid vapor pressures (PL) for 11 NPAHs, 10 OPAHs, and 19 parent PAHs. The slopes and intercepts of the linear regressions between temperature versus KOA and PL were provided and can be used to estimate KOA and PL for the 40 targeted compounds at any temperature. The internal energies of phase transfer (ΔUOA) and enthalpies of vaporization (ΔHL) for all targeted compounds were also calculated using the GC-RT technique. High-molecular-weight compounds may release or absorb higher heat energy to transform between different phases. NPAHs and OPAHs had a non-ideal solution behavior with activity in octanol (γₒcₜ) in the range of 19–53 and 18–1,078, respectively, which is larger than the unity threshold. A comparison among four groups of PAH derivatives showed that a functional group (nitro-, oxygen-, chloro-, and bromo-) in PAH derivatives increased γₒcₜ for corresponding parent PAHs by tens (mono-group) to hundreds of times (di-group). This study suggests that the GC-RT method is applicable for indirectly measuring the physicochemical properties of various groups of organic compounds.
显示更多 [+] 显示较少 [-]The seasonal variations and potential sources of nitrous acid (HONO) in the rural North China Plain 全文
2022
Song, Yifei | Zhang, Yuanyuan | Xue, Chaoyang | Liu, Pengfei | He, Xiaowei | Li, Xuran | Mu, Yujing
Nitrous acid (HONO), an essential precursor of hydroxyl radicals (OH) in the troposphere, plays an integral role in atmospheric photochemistry. However, potential HONO sources remain unclear, particularly in rural areas, where long-term (including seasonal) measurements are scarce. HONO and related parameters were measured at a rural site in the North China Plain (NCP) during the winter of 2017 and summer and autumn of 2020. The mean HONO level was higher in winter (1.79 ± 1.44 ppbv) than in summer (0.67 ± 0.50 ppbv) and autumn (0.83 ± 0.62 ppbv). Source analysis revealed that the heterogeneous conversion (including photo-enhanced conversion) of NO₂ on the ground surface dominated the daytime HONO production in the three seasons (43.1% in winter, 54.3% in summer, and 62.0% in autumn), and the homogeneous reaction of NO and OH contributed 37.8, 12.2, and 28.4% of the daytime HONO production during winter, summer, and autumn, respectively. In addition, the total contributions of other sources (direct vehicle emissions, particulate nitrate photolysis, NO₂ uptake and its photo-enhanced reaction on the aerosol surface) to daytime HONO production were less than 5% in summer and autumn and 12.0% in winter. Unlike winter and autumn, an additional HONO source was found in summer (0.45 ± 0.21 ppbv h⁻¹, 31.4% to the daytime HONO formation), which might be attributed to the HONO emission from the fertilized field. Among the primary radical sources (photolysis of HONO, O₃, and formaldehyde), HONO photolysis was dominant, with contributions of 82.6, 49.3, and 63.2% in winter, summer, and autumn, respectively. Our findings may aid in understanding HONO formation in different seasons in rural areas and may highlight the impact of HONO on atmospheric oxidation capacity.
显示更多 [+] 显示较少 [-]Importance of local non-fossil sources to carbonaceous aerosols at the eastern fringe of the Tibetan Plateau, China: Δ14C and δ13C evidences 全文
2022
Li, Yizhong | Zhang, Chao | Yan, Fangping | Kang, Shichang | Xu, Yinbo | Liu, Yixi | Gao, Yongheng | Chen, Pengfei | He, Cenlin
Carbonaceous particles are an important radiative forcing agent in the atmosphere, with large temporal and spatial variations in their concentrations and compositions, especially in remote regions. This study reported the Δ¹⁴C and δ¹³C of total carbon (TC) and water-insoluble particulate carbon (IPC) of the total suspended particles (TSP) and PM₂.₅ at a remote site of the eastern Tibetan Plateau (TP), a region that is influenced by heavy air pollution from Southwest China. The average organic carbon and elemental carbon concentrations of TSP samples in this study were 3.20 ± 2.38 μg m⁻³ and 0.68 ± 0.67 μg m⁻³, respectively, with low and high values in summer and winter, respectively. The fossil fuel contributions of TC in TSP and PM₂.₅ samples were 18.91 ± 7.22% and 23.13 ± 12.52%, respectively, both of which were far lower than that in Southwest China, indicating the importance of non-fossil contributions from local sources. The δ¹³C of TC in TSP samples of the study site was −27.06 ± 0.96‰, which is between the values of long-range transported sources (e.g., Southwest China) and local biomass combustion emissions. Therefore, despite the contribution from the long-range transport of particles, aerosols emitted from local biomass combustion also have an important influence on carbonaceous particles at the study site. The findings of this work can be applied to other remote sites on the eastern TP and should be considered in related research in the future.
显示更多 [+] 显示较少 [-]Mechanical recycling of plastic waste as a point source of microplastic pollution 全文
2022
Suzuki, Go | Uchida, Natsuyo | Tuyen, Le Huu | Tanaka, Kosuke | Matsukami, Hidenori | Kunisue, Tatsuya | Takahashi, Shin | Viet, Pham Hung | Kuramochi, Hidetoshi | Ōsako, Masahiro
Plastic pollution has become one of the most pressing environmental issues. Recycling is a potential means of reducing plastic pollution in the environment. However, plastic fragments are still likely released to the aquatic environment during mechanical recycling processes. Here, we examined the plastic inputs and effluent outputs of three mechanical recycling facilities in Vietnam dealing with electronic, bottle, and household plastic waste, and we found that large quantities of microplastics (plastics <5 mm in length) are generated and released to the aquatic environment during mechanical recycling without proper treatment. Comparisons with literature data for microplastics in wastewater treatment plant effluents and surface water indicated that mechanical recycling of plastic waste is likely a major point source of microplastics pollution. Although there is a mismatch between the size of the microplastics examined in the present study and the predicted no-effect concentration reported, it is still possible that microplastics generated at facilities pose risks to the aquatic environment because there might be many plastic particulates smaller than 315 μm, as suggested by our obtained size distributions. With mechanical recycling likely to increase as we move to a circular plastics economy, greater microplastics emissions can be expected. It is therefore an urgent need to fully understand not only the scale of microplastic generation and release from plastic mechanical recycling but also the environmental risk posed by microplastics in the aquatic environment.
显示更多 [+] 显示较少 [-]