细化搜索
结果 621-630 的 4,895
Aged biochar alters nitrogen pathways in bauxite-processing residue sand: Environmental impact and biogeochemical mechanisms
2019
Rezaei Rashti, M. | Esfandbod, M. | Phillips, I.R. | Chen, C.R.
Low nitrogen (N) content and retention in bauxite-processing residue sand (BRS) disposal areas pose a great challenge to the establishment of sustainable vegetation cover in this highly alkaline environment. The budget and fate of applied N in BRS and its potential environmental impacts are largely unknown. We investigated the effect of combined application of biochars [aged acidic (AC) vs alkaline pine (PC)] and di-ammonium phosphate (DAP) fertiliser on ammonia (NH₃) volatilisation, nitrous oxide (N₂O) emission and N retention in a 116-day glasshouse study. The application of AC to BRS decreased pH (≈0.5 units) in BRS, while PC biochar increased pH (≈0.3 units). The application of AC reduced NH₃ volatilisation by ca. 80%, while PC by ca. 25%. On the other hand, the AC treatment increased N₂O emission by 5 folds. However, the N loss via N₂O emission in the AC treatment only accounted for ca. 0.4% of applied N. The reduction in BRS pH and increased retention of mineral N due to the presence of oxygen-containing (phenolic and carboxylic) functional groups in AC may be responsible for reduced NH₃ volatilisation and increased N₂O emission. This study has highlighted the potential of biochar (particularly aged biochar) in improving N retention and minimising environmental impacts in highly alkaline environments.
显示更多 [+] 显示较少 [-]Responses of leaf-associated biofilms on the submerged macrophyte Vallisneria natans during harmful algal blooms
2019
Jiang, Mengqi | Zhou, Yanping | Ji, Xiyan | Li, Huimin | Zheng, Zheng | Zhang, Jibiao
The present study investigated the physiological responses, photosynthetic activity, and microbial community structure of leaf-associated biofilms on the microphyte Vallisneria natans during a harmful algal bloom. Results of the physiological and photosynthetic indices (Fᵥ/Fₘ ratios [maximum quantum yield of photosystem II (PSII)]; malondialdehyde content; total chlorophyll; and activities of superoxide dismutase, catalase and peroxidase) indicated that algal blooms could cause inhibition of photosynthesis, oxidative stress and an antioxidant system stress response in Vallisneria natans leaf-associated biofilms. Multifractal analysis suggested that allelochemicals or algal organic matter released by cyanobacteria could reduce the surface roughness of the leaf. Microbial diversity analysis of the biofilms showed that algal blooms slightly altered the microbial community structure while the richness and evenness of the microbial composition remained stable. This study provided useful information to better understand the adverse effects of algal blooms on submerged macrophytes.
显示更多 [+] 显示较少 [-]Temperature and clone-dependent effects of microplastics on immunity and life history in Daphnia magna
2019
Sadler, Daniel E. | Brunner, Franziska S. | Plaistow, Stewart J.
Microplastic (MP) pollution is potentially a major threat to many aquatic organisms. Yet we currently know very little about the mechanisms responsible for the effects of small MPs on phenotypes, and the extent to which effects of MPs are modified by genetic and environmental factors. Using a multivariate approach, we studied the effects of 500 nm polystyrene microspheres on the life history and immunity of eight clones of the freshwater cladoceran Daphnia magna reared at two temperatures (18 °C/24 °C). MP exposure altered multivariate phenotypes in half of the clones we studied but had no effect on others. In the clones that were affected, individuals exposed to MPs had smaller offspring at both temperatures, and more offspring at high temperature. Differences in response to MP exposure were unrelated to differences in particle uptake, but were instead linked to an upregulation of haemocytes, particularly at high temperature. The clone-specific, context-dependent nature of our results demonstrates the importance of incorporating genetic variation and environmental context into assessments of the impact of plastic particle exposure. Our results identify immunity as an important mechanism underpinning genetically variable responses to MP pollution and may have major implications for predicting consequences of MP pollution.
显示更多 [+] 显示较少 [-]Co-transport of phenanthrene and pentachlorophenol by natural soil nanoparticles through saturated sand columns
2019
Liu, Fei | Xu, Baile | He, Yan | Brookes, Philip C. | Xu, Jianming
Mobile colloids such as nanoparticles (NPs) are often considered to affect the fate and transport of various contaminants by serving as carriers. Many studies have focused on the effect of engineered NPs on contaminant transport. To date, very little information is available on the co-transport of natural soil NPs with typical organic contaminants. This study investigated the co-transport of phenanthrene (PHE) and pentachlorophenol (PCP) by three soil NPs through saturated sand columns. Soil NPs with high organic matter and particle concentration were the most effective in transporting PHE through columns. In addition, soil NPs significantly increased the transport of low-level PHE (0.2 mg L−1) but there was no obvious increase at 1.0 mg L−1 PHE. This is attributed to a higher ratio of NP-associated PHE to total PHE at a low-level than at a high-level during transport. In contrast to PHE, the chemical speciation of PCP determined its mobility, which was highly dependent on solution pH. At pH 6.5, anionic PCP became dominant and soluble in the effluent. This could account for the negligible effect of soil NPs on PCP mobility. At pH 4.0, however, neutral molecular PCP dominated and, as expected, decreased mobility of PCP occurred. Soil NPs considerably enhanced the transport of neutral PCP in NP-associated forms compared to controls, due to the high hydrophobicity and sorption affinity of PCP to NPs. The mobility of soil NPs was little affected by PHE and PCP under tested conditions. This study indicated that highly mobile soil NPs may be effective carriers for organic contaminants and give a new direction to polluted site remediation by using a natural material, e.g., soil.
显示更多 [+] 显示较少 [-]Associations of ambient fine particulate matter and its constituents with serum complement C3 in a panel study of older adults in China
2019
Bai, Lu | Zhao, Meiduo | Xu, Jing | Li, Ang | Luo, Kai | Li, Runkui | Yang, Mingan | Xu, Qun
Epidemiological studies have demonstrated association between the total mass of fine particulate matter (PM2.5) exposures and inflammation. There are few studies exploring the associations between PM2.5 constituents and the biomarkers of inflammation in older adults and the underlying biological mechanisms are not exact. In this study, we examined the associations between PM2.5 and its constituents (organic carbon (OC), elemental carbon (EC), total carbon (TC), polycyclic aromatic hydrocarbons (PAHs) and complement three factor (C3), an important biomarker of inflammation in a repeated panel of 175 older adults in Beijing, China. We have constructed three different linear mixed effect models (single-pollutant model, constituent-PM2.5 joint model, and constituent-residual model) to evaluate the association of PM2.5 and its constituents and complement C3, controlling for concentration of high sensitive C-reactive protein (hs-CRP), day of week, mean temperature, relative humidity, location and potential individual confounders. We found robust positive associations of OC, EC, TC, PAHs and PM2.5 mass concentration with complement C3 at different lag patterns. The cumulative effects of pollutants increased across average of 2–5 days. Individuals aged 65 and above, or with diabetes, or BMI ≥30, or with no-cardiopathy, or with hypertension also exhibited positive associations between PM2.5 and complement C3. The results revealed that short-term exposure to PM2.5 and its constituents could result in a significant increase in serum level of complement C3. These findings suggested a possible involvement of complement C3 in the effect of PM2.5 on inflammatory reaction.
显示更多 [+] 显示较少 [-]Occurrence and partitioning of third-generation antifouling biocides in sediments and porewaters from Brazilian northeast
2019
Viana, José Lucas Martins | dos Santos, Sara Raiane Viana | dos Santos Franco, Teresa Cristina Rodrigues | Almeida, Márcio Aurélio Pinheiro
Fouling organisms fix and grow on submerged surfaces and may cause several economic losses. Thus, antifouling biocides have been introduced in antifouling paints in order to avoid this phenomenon. However, their widespread use became a global problem, since these substances can be highly toxic to non-target organisms, mainly in high boat traffic areas. The occurrence and environmental behavior of antifouling biocides are especially unknown in areas of ecological relevance, as Amazonian and pre-Amazonian regions. Thus, the aim of this work was to evaluate, for the first time, levels and the partitioning behavior of the antifouling organic biocides irgarol, diuron and also stable degradation products of dichlofluanid and diuron (DMSA and DCPMU, respectively) in sediments and porewaters from a high boat traffic area located in the Northeast of Brazil. Our results showed high concentrations of irgarol and diuron in sediments, and their contamination patterns suggested that misuse and discard of antifouling residues contribute for a serious risk in this environment. Additionally, DCPMU and DMSA were detected for the first time in porewaters of the Brazilian coast. This work represents one of the few registers of contamination, especially by antifouling substances, in Amazonian areas, despite their environmental relevance.
显示更多 [+] 显示较少 [-]Genotoxicological analyses of insectivorous bats (Mammalia: Chiroptera) in central Brazil: The oral epithelium as an indicator of environmental quality
2019
Benvindo-Souza, Marcelino | Borges, Rinneu Elias | Pacheco, Susi Missel | Santos, Lia Raquel de Souza
The micronucleus (MN) test of the human buccal mucosa was developed more than 30 years ago, although this technique has only recently been applied to wild mammals. This paper presents a pioneering study in the genotoxicological evaluation of the exfoliated cells of the buccal mucosa of bats. The assay was applied to two insectivorous bat species (Noctilio albiventris and Pteronotus parnellii) sampled in riparian corridors located in the city of Palmas (capital of the Brazilian state of Tocantins), with the results being compared with those obtained for a third insectivorous species (Nyctinomops laticaudatus), which has established a colony under a road bridge in the same region. This colony represents one of the largest molossidae populations ever recorded in Brazil. A significantly higher frequency of micronuclei was recorded in this colony, as well as a number of other nuclear abnormalities, including binucleated cells, cells with condensed chromatin and karyolysis, in comparison with the bats from the riparian corridors, indicating that the bats from the bridge colony are more susceptible to genotoxic damage. Thus, it is demonstrated the importance of the biomarker (MN) for use in wild animals and allows to conclude that colony bats are more susceptible to genotoxic damages.
显示更多 [+] 显示较少 [-]Proteomic analysis of the hepatotoxicity of Microcystis aeruginosa in adult zebrafish (Danio rerio) and its potential mechanisms
2019
Du, Benben | Liu, Guangfu | Ke, Mingjing | Zhang, Zhenyan | Zheng, Meng | Lu, Tao | Sun, Liwei | Qian, Haifeng
Microcystis aeruginosa is one of the main species of cyanobacteria that causes water blooms. M. aeruginosa can release into the water several types of microcystins (MCs), which are harmful to aquatic organisms and even humans. However, few studies have investigated the hepatotoxicity of M. aeruginosa itself in zebrafish in environments that simulate natural aquatic systems. The objective of this study was to evaluate the hepatotoxicity of M. aeruginosa in adult zebrafish (Danio rerio) after short-term (96 h) exposure and to elucidate the potential underlying mechanisms. Distinct histological changes in the liver, such as enlargement of the peripheral nuclei and sinusoids and the appearance of fibroblasts, were observed in zebrafish grown in M. aeruginosa culture. In addition, antioxidant enzyme activity was activated and protein phosphatase (PP) activity was significantly decreased with increasing microalgal density. A proteomic analysis revealed alterations in a number of protein pathways, including ribosome translation, immune response, energy metabolism and oxidative phosphorylation pathways. Western blot and real-time PCR analyses confirmed the results of the proteomic analysis. All results indicated that M. aeruginosa could disrupt hepatic functions in adult zebrafish, thus highlighting the necessity of ecotoxicity assessments for M. aeruginosa at environmentally relevant densities.
显示更多 [+] 显示较少 [-]Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes
2019
Nnadozie, Chika F. | Odume, Oghenekaro Nelson
Freshwater environments are susceptible to possible contamination by residual antibiotics that are released through different sources, such as agricultural runoffs, sewage discharges and leaching from nearby farms. Freshwater environment can thus become reservoirs where an antibiotic impact microorganisms, and is an important public health concern. Degradation and dilution processes are fundamental for predicting the actual risk of antibiotic resistance dissemination from freshwater reservoirs. This study reviews major approaches for detecting and quantifying antibiotic resistance bacteria (ARBs) and genes (ARGs) in freshwater and their prevalence in these environments. Finally, the role of dilution, degradation, transmission and the persistence and fate of ARB/ARG in these environments are also reviewed. Culture-based single strain approaches and molecular techniques that include polymerase chain reaction (PCR), quantitative polymerase chain reaction (qPCR) and metagenomics are techniques for quantifying ARB and ARGs in freshwater environments. The level of ARBs is extremely high in most of the river systems (up to 98% of the total detected bacteria), followed by lakes (up to 77% of the total detected bacteria), compared to dam, pond, and spring (<1%). Of most concern is the occurrence of extended-spectrum β-lactamase producing Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus (VRE), which cause highly epidemic infections. Dilution and natural degradation do not completely eradicate ARBs and ARGs in the freshwater environment. Even if the ARBs in freshwater are effectively inactivated by sunlight, their ARG-containing DNA can still be intact and capable of transferring resistance to non-resistant strains. Antibiotic resistance persists and is preserved in freshwater bodies polluted with high concentrations of antibiotics. Direct transmission of indigenous freshwater ARBs to humans as well as their transitory insertion in the microbiota can occur. These findings are disturbing especially for people that rely on freshwater resources for drinking, crop irrigation, and food in form of fish.
显示更多 [+] 显示较少 [-]Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production
2019
Kang, Ruifen | Li, Ruonan | Dai, Pengyuan | Li, Zhaojian | Li, Yansen | Li, Chunmei
Deoxynivalenol (DON) frequently detected in a wide range of foods and feeds, inducing cytotoxicity to animals and humans. To investigate the underlying mechanism of DON-induced apoptosis and inflammation in porcine small intestinal epithelium, intestinal porcine epithelial cells (IPEC-J2 cells) were chosen as objects, and were treated by different concentrations (0 μg/mL, 0.2 μg/mL, 0.5 μg/mL, 1.0 μg/mL, 2.0 μg/mL, 4.0 μg/mL, 6.0 μg/mL) of DON. The results showed that DON induced cytotoxicity of IPEC-J2 cells in a dose-dependent manner, which is demonstrated by decreasing cell viability. Compared with the control group, DON treatment increased the expressions of genes associated with inflammation and apoptosis, such as interleukin-1 beta (IL-1β), cyclooxgenase-2 (COX-2), interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), caspase-3, caspase-8, caspase-9, and decreased the cell anti-oxidative status. Protein immunofluorescence showed increased expression of caspase-3, nuclear factor kB (NF-κB) and phosphorylated NF-κB in IPEC-J2 cells. DON increased the content of intracellular reactive oxygen species (ROS) of IPEC-J2 cells. N-Acetyl-L-cysteine (NAC), a commonly used antioxidant, blocked DON-induced ROS generation, alleviated the DON-induced apoptosis and inflammation. These results suggested that DON-induced impairment of IPEC-J2 cells is possibly due to increased ROS production, and expressions of genes and proteins associated with apoptosis and inflammation.
显示更多 [+] 显示较少 [-]