细化搜索
结果 1-10 的 17
Sterilization effect of eletrolyzed water on rice food
2005
Isobe, S.(National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan) | Lee, C.-Y.(Cheiljedang Corporation, Korea) | Yoshida, K.(Hoshizaki Electric Co., Japan)
Utilization of electrolyzed water in food processing field
2002
Kobayashi, K. (Hoshizaki Electric Co. Ltd., Kisuki, Shimane (Japan))
Characteristics and use of electrolyzed water in food industries 全文
2018
Campagnol, P. C. B. | Menezes, C. R. | Cichoski, A. J. | Genro, A. L. G. | Silva, M. S. | Flores, D. R. M. | Athayde, D. R. | Silva, J. S. | Wagner, R.
Electrolyzed water (EW) is a new technology that emerged in the last years with potential application in foods, mainly in microbiological aspects, with variation in application modes, dipping the food in solution, where variation of time can be changed and be apply in the form of spray. Because EW characteristics, its action in microorganisms are still been studied for mechanism elucidation and possible damages, as well its influence in the intrinsic characteristics of food, like color and oxidation. This unconventional or ‘green’ technology has the purpose to prove microbiological quality of food and decrease the use of natural resources like water with minimal generation of chemical/toxic residues. More studies are necessary in relation to this technology and its possible applications in food industry, as well characteristics and mechanisms.
显示更多 [+] 显示较少 [-]Stability of electrolyzed water: from the perspective of food industry 全文
2021
Sobri S. | Sulaiman N. S. | Khalid N. I. | Ab Aziz N. | Taip F. S. | Nor Khaizura M. A. R.
Green cleaner and disinfectant can provide a better environment and they can reduce cleaning cost by eliminating the cost of harsh cleaning chemicals, minimizing cleaning chemicals storage space, reducing cost for wastewater treatment and reducing logistics cost for chemical supply. This study explored the personal view of Small and Medium Enterprises (SMEs) top to bottom workers towards the challenges during cleaning and disinfection process and their readiness in accepting a green cleaner and disinfectant. In this work, the advantages and disadvantages of electrolyzed water (EW) as green cleaner and disinfectant were discussed. A lab-scale batch ion-exchange membrane electrolysis unit was used to produce acidic electrolyzed water (AcEW) and alkaline electrolyzed water (AlEW). The stability of AcEW and AlEW was also studied based on its physical changes (pH, oxidative-reduction potential (ORP), chlorine content and hydrogen peroxide content) in 7 days of storage, whereby measurements were taken daily. The pH maintained for both AcEW and AlEW during the 7 days of storage. The ORP maintained at plateau for the first 5 days of AcEW storage. After 5 days, AcEW showed a decreasing trend. While ORP for AlEW increases drastically between day 1 and 2. Then, the ORP reaches a plateau after three days. The amount of free chlorine, total chlorine and hydrogen peroxide content was 10 mg/L, respectively, on the day of production. However, all the properties decreased gradually and there were no chlorine and hydrogen peroxide detected on the 7th day. The results from this study can be used as a guideline to store the EW and to understand the stability of the EW, which can benefit the SME food manufacturers.
显示更多 [+] 显示较少 [-]The use of electrolyzed acid water in food processing environment
2003
Izumi, H. (Kinki Univ., Higashiosaka, Osaka (Japan))
Effectiveness of electrolyzed oxidizing water on fungi and mycotoxins in food 全文
2022
Villarreal-Barajas, Tania | Vázquez-Durán, Alma | Méndez-Albores, Abraham
Electrolyzed oxidizing water (EOW) can be considered in the agrofood industry as a new antimicrobial agent with disinfectant, detoxifying, and shelf-life improvement properties. EOW is produced by electrolysis of water, with no added chemicals, except for sodium chloride. The antifungal and detoxifying mechanisms of EOW depend mainly on: pH, oxidation-reduction potential (ORP), and available chlorine concentration (ACC). EOW offers many advantages over other conventional chemical methods, including less adverse chemical residues, safe-handling, secure, energy-saving, cost-effective, and environmentally-friendly. As a result, EOW could be used for the development of safer and more socially acceptable methods for fungi decontamination and mycotoxin detoxification. This review contains an overview of EOW effectiveness to decontaminate non-toxigenic and mycotoxigenic fungi, its safety and efficacy for mycotoxin detoxification, the proposed mechanism of action of EOW on fungal cells, and the chemical mechanism of action of EOW on mycotoxins. Finally, conclusions and future research necessities are also outlined.
显示更多 [+] 显示较少 [-]Sterilization effect and influence on food surface by acidic electrolyzed water treatment
2001
Yoshida, K. (Hokkaido Univ., Sapporo (Japan)) | Lim, K.I. | Chung, H.C. | Uemura, K. | Isobe, S. | Suzuki, T.
Recently, several reports about sterilization effect of electrolyzed water have been published. The electrolyzed water is expected as one of attractive application for sanitation of fresh food, however, to install this electrolyzed water, we have to clear the potential of the microorganism control for real food. In this paper, we try to reveal the mechanism of the microorganism control, and also try to check the food quality change during the treatment. Therefore, to evaluate the effect of the electrolyzed water, we examined the several test for making sterilization mechanism clear and observed microorganism behavior on food surface. At first, for the purpose of making sterilization effects clear in vitro condition, we did microorganism test with several injection ratio and number. Then, we studied the effects of catalase on the enumeration of stressed Escherichia coli cells after acidic electrolyzed water treatment. Moreover, we studied sterilization effect of acidic electrolyzed water for E. coli on an agar block on the assumption as one of food model. In addition, we studied sterilization effects for sliced raw tuna as one sample of food surface treatment. The change in the quality of food surface was observed by scanning electron microscope, color meter and so on. Sterilization effects are dependent the condition of injection ratio and mixing numbers. These results suggest that it is important to keep available chlorine concentration for keeping the potential to the microorganisms' control. The increasing of E. coli number with the addition of catalase was suggested that the weak concentration of electrolyzed water gave the injured microbes. The Observation of cultivated E. coli behavior on agar block showed the microorganism behavior. Acidic electrolyzed water sterilizes microorganisms on sliced raw tuna, however, after treatment, the color change of surface of tuna and the protein denaturation were observed. These results suggest that when the electrolyzed water treatment is applied to control the microorganism on surface, the effect against food surface must be considered.
显示更多 [+] 显示较少 [-]Removal of Shewanella putrefaciens Biofilm by acidic electrolyzed water on food contact surfaces 全文
2021
Yan, Jun | Xie, Jing
Shewanella putrefaciens is an important specific spoilage organism (SSO) in seafood under low-temperature storage and can form biofilms on seafood processing-related contact surfaces, which exacerbates seafood spoilage and causes food safety problems. The characterization of and dynamic change in biofilms formed by Shewanella putrefaciens on three seafood processing-related contact surfaces were investigated in this study. An effective strategy to eliminate mature biofilms by acidic electrolysis water (AEW) was provided. Shewanella putrefaciens can form biofilms on glass, stainless steel and polystyrene, which are closely connected with surface properties such as hydrophilicity/hydrophobicity and surface roughness. AEW can be an excellent choice to clean mature biofilms formed by S. putrefaciens. AEW at a concentration of 3 g/L can remove almost all biofilms on the three common food contact materials tested. There is a bactericidal effect on the biofilm, reducing the possibility of secondary contamination. This study will contribute to promoting the application of AEW for controlling biofilms during seafood processing.
显示更多 [+] 显示较少 [-]System electro-neutralizer of agrochemicals contained in food and water samples through electrons trap 全文
2020
DUVOISIN, Charles Adriano(Universidade Federal de São Paulo Departamento de Química) | SOUSA, José Paulo Felipe Afonso de | Pscheidt, André | BARETTA, Dilmar | HORST, Diogo José | VIEIRA, Rogério de Almeida | MOURÃO JR., Carlos Alberto | SECCHI, Mario Alberto
Abstract This study presents a system to electro-neutralize agrochemicals in food and water samples based on the properties of a controlled electron trap, the related apparatus is protected under patent application (WO/2018/090110; INPI: BR 10 2016 0268486) / (PCT / BR 2017/050115). The efficacy of the system was verified as to the type, quantity, surface tension charge, temperature, pH and static energy loading of the electrolyte for both solid and liquid samples. It also took into consideration the retention and accumulation measurement of electric charges, verification of electrical potential differences and also accumulation by applying pulsed high voltage in according to the Daniell Cell method. The proposed technology is able to provide the electron-neutralization of acidic and alkaline chemicals and their toxic byproducts by modifying the pH of the liquid or solid medium. This is justified by the action of the electron trap using different polarities and electrodes in the range of 8 to 100 kV.
显示更多 [+] 显示较少 [-]An integrated electrolysis – electrospray – ionization antimicrobial platform using Engineered Water Nanostructures (EWNS) for food safety applications 全文
2018
Vaze, Nachiket | Jiang, Yi | Mena, Lucas | Zhang, Yipei | Bello, Dhimiter | Leonard, Stephen S. | Morris, Anna M. | Eleftheriadou, Mary | Pyrgiotakis, Georgios | Demokritou, Philip
Engineered water nanostructures (EWNS) synthesized utilizing electrospray and ionization of water, have been, recently, shown to be an effective, green, antimicrobial platform for surface and air disinfection, where reactive oxygen species (ROS), generated and encapsulated within the particles during synthesis, were found to be the main inactivation mechanism. Herein, the antimicrobial potency of the EWNS was further enhanced by integrating electrolysis, electrospray and ionization of de-ionized water in the EWNS synthesis process. Detailed physicochemical characterization of these enhanced EWNS (eEWNS) was performed using state-of-the-art analytical methods and has shown that, while both size and charge remain similar to the EWNS (mean diameter of 13 nm and charge of 13 electrons), they possess a three times higher ROS content. The increase of the ROS content as a result of the addition of the electrolysis step before electrospray and ionization led to an increased antimicrobial ability as verified by E. coli inactivation studies using stainless steel coupons. It was shown that a 45-min exposure to eEWNS resulted in a 4-log reduction as opposed to a 1.9-log reduction when exposed to EWNS. In addition, the eEWNS were assessed for their potency to inactivate natural microbiota (total viable and yeast and mold counts), as well as, inoculated E. coli on the surface of fresh organic blackberries. The results showed a 97% (1.5-log) inactivation of the total viable count, a 99% (2-log) reduction in the yeast and mold count and a 2.5-log reduction of the inoculated E. coli after 45 min of exposure, without any visual changes to the fruit. This enhanced antimicrobial activity further underpins the EWNS platform as an effective, dry and chemical free approach suitable for a variety of food safety applications and could be ideal for delicate fresh produce that cannot withstand the classical, wet disinfection treatments.
显示更多 [+] 显示较少 [-]