خيارات البحث
النتائج 11 - 20 من 86
Chemical, rheological, and volatile profiling of microalgae Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species النص الكامل
2024
Johannes Magpusao | Indrawati Oey | Biniam Kebede
Chemical, rheological, and volatile profiling of microalgae Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species النص الكامل
2024
Johannes Magpusao | Indrawati Oey | Biniam Kebede
Microalgae are increasingly regarded as a sustainable source of novel food and functional products due to their nutritional composition. This study aimed to conduct an in-depth analysis of the chemical, microstructural and rheological, and volatile-flavour related properties of Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species. Chemometric data analysis was employed to integrate the multivariate data, investigate the classification among the four species, and identify discriminating and distinct features. Arthrospira is high in protein content, and Nannochloropsis is lipid-rich with dominantly polyunsaturated fatty acids. Isochrysis is rich in carotenoids and total phenolics, while Tetraselmis is high in carbohydrates. Key discriminant volatile markers encompass aldehydes, terpenes, and hydrocarbons for Arthrospira; ketones and alcohols for Nannochloropsis; aldehydes, ketones, and sulfur-containing compounds for Tetraselmis; and furans and aldehydes for Isochrysis. Moreover, Arthrospira and Isochrysis demonstrate elevated viscosity and notable thickening potential. In summary, the different microalgal biomass studied in this study showcase unique compositional, rheological, and volatile properties, highlighting their potential as functional ingredients for diverse applications in the food and pharmaceutical industries.
اظهر المزيد [+] اقل [-]Chemical, rheological, and volatile profiling of microalgae Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species النص الكامل
2024
Johannes Magpusao | Indrawati Oey | Biniam Kebede
Microalgae are increasingly regarded as a sustainable source of novel food and functional products due to their nutritional composition. This study aimed to conduct an in-depth analysis of the chemical, microstructural and rheological, and volatile-flavour related properties of Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species. Chemometric data analysis was employed to integrate the multivariate data, investigate the classification among the four species, and identify discriminating and distinct features. Arthrospira is high in protein content, and Nannochloropsis is lipid-rich with dominantly polyunsaturated fatty acids. Isochrysis is rich in carotenoids and total phenolics, while Tetraselmis is high in carbohydrates. Key discriminant volatile markers encompass aldehydes, terpenes, and hydrocarbons for Arthrospira; ketones and alcohols for Nannochloropsis; aldehydes, ketones, and sulfur-containing compounds for Tetraselmis; and furans and aldehydes for Isochrysis. Moreover, Arthrospira and Isochrysis demonstrate elevated viscosity and notable thickening potential. In summary, the different microalgal biomass studied in this study showcase unique compositional, rheological, and volatile properties, highlighting their potential as functional ingredients for diverse applications in the food and pharmaceutical industries.
اظهر المزيد [+] اقل [-]Storage and thermal stability of selected vegetable purees processed with microwave-assisted thermal sterilization النص الكامل
2024
Zeyad Albahr | Juthathip Promsorn | Zhongwei Tang | Girish M. Ganjyal | Juming Tang | Shyam S. Sablani
Storage and thermal stability of selected vegetable purees processed with microwave-assisted thermal sterilization النص الكامل
2024
Zeyad Albahr | Juthathip Promsorn | Zhongwei Tang | Girish M. Ganjyal | Juming Tang | Shyam S. Sablani
The impact of microwave-assisted thermal sterilization (MATS) on three natural pigments and their storage stability in vegetable purees was investigated. We selected carrot puree for beta carotene, red cabbage puree for anthocyanins, and red beetroot puree for betalains. The purees were packaged in multilayer flexible pouches of AlOx-coated PET (12 μm)//AlOx-coated PET (12 μm)//AlOx-coated PET (12 μm)//ONy (15 μm)//CPP (70 μm), then processed with the MATS system to Fo = 6 to 11 min. After MATS treatment, the pouches were stored for 6 months at a storage temperature of 37.8 °C. The MATS treatment had a significant impact (p < 0.05) on the instrumental colors of three purees, with the total color difference (ΔE) ranging between 6.0 and 10.5. Similarly, the concentration of betalains experienced degradation by 20%−29% after the MATS treatment, while beta-carotene concentration showed a high retention. In addition, the pH of the purees declined considerably (p < 0.05) after the MATS treatment. Over the 6 months of storage at 37.8 °C, the PET-metal oxide pouches maintained the moisture content in all the purees, as the weight loss was only 0.43%−0.45%. The pigments in the MATS-processed purees had different levels of stability; ΔE values varied between 4.23 and 12.3. Beta-carotene was the most stable pigment, followed by betalains and anthocyanins. The degradation of both betalains and anthocyanins during storage was explained by first and fractional conversion models. MATS processing and packages with high gas barriers can therefore be used to preserve selected vegetable purees rich in natural pigments.
اظهر المزيد [+] اقل [-]Storage and thermal stability of selected vegetable purees processed with microwave-assisted thermal sterilization النص الكامل
2024
Zeyad Albahr | Juthathip Promsorn | Zhongwei Tang | Girish M. Ganjyal | Juming Tang | Shyam S. Sablani
The impact of microwave-assisted thermal sterilization (MATS) on three natural pigments and their storage stability in vegetable purees was investigated. We selected carrot puree for beta carotene, red cabbage puree for anthocyanins, and red beetroot puree for betalains. The purees were packaged in multilayer flexible pouches of AlOx-coated PET (12 μm)//AlOx-coated PET (12 μm)//AlOx-coated PET (12 μm)//ONy (15 μm)//CPP (70 μm), then processed with the MATS system to Fo = 6 to 11 min. After MATS treatment, the pouches were stored for 6 months at a storage temperature of 37.8 °C. The MATS treatment had a significant impact (p < 0.05) on the instrumental colors of three purees, with the total color difference (ΔE) ranging between 6.0 and 10.5. Similarly, the concentration of betalains experienced degradation by 20%−29% after the MATS treatment, while beta-carotene concentration showed a high retention. In addition, the pH of the purees declined considerably (p < 0.05) after the MATS treatment. Over the 6 months of storage at 37.8 °C, the PET-metal oxide pouches maintained the moisture content in all the purees, as the weight loss was only 0.43%−0.45%. The pigments in the MATS-processed purees had different levels of stability; ΔE values varied between 4.23 and 12.3. Beta-carotene was the most stable pigment, followed by betalains and anthocyanins. The degradation of both betalains and anthocyanins during storage was explained by first and fractional conversion models. MATS processing and packages with high gas barriers can therefore be used to preserve selected vegetable purees rich in natural pigments.
اظهر المزيد [+] اقل [-]Malvidin-3-O-galactoside ameliorates colonic mucosal barrier function via the Notch signaling pathway النص الكامل
2024
Chunxue Zhang | Bo Zhang | Lin Zhang | Ahmed Adel Ashour | Yuehua Wang | Ying Zhang | Hui Tan | Li Li | Xinyao Jiao
Malvidin-3-O-galactoside ameliorates colonic mucosal barrier function via the Notch signaling pathway النص الكامل
2024
Chunxue Zhang | Bo Zhang | Lin Zhang | Ahmed Adel Ashour | Yuehua Wang | Ying Zhang | Hui Tan | Li Li | Xinyao Jiao
The colonic mucosal barrier is an important component of the intestinal barrier, and its integrity is crucial for maintaining digestive tract homeostasis and normal metabolism in the body. This study aimed to elucidate the mechanisms by which malvidin-3-O-galactoside (M3G) might ameliorate colonic mucosal barrier function, from the perspective of physical barrier function and immune barrier function. Male C57BL/6J mice were given dextran sulfate sodium (DSS) to establish a mice model for colitis and then administrated with or without M3G for one week. The results showed that M3G supplementation significantly improved the disease activity index (DAI) score and colon tissue injury in mice with DSS-induced colitis. M3G improved the colonic physical barrier function by modulating the expression of mucin2 (MUC2), claudin-1, occludin, zona occludens 1 (ZO-1), and intestinal fatty acid binding protein (iFABP) in the colonic mucosa. Additionally, M3G also relieved the colonic immune barrier of mice by increasing the level of secretory immunoglobulin A (SIgA) in colon tissue and the percentages of CD4+T (CD3+CD4+) and CD8+T (CD3+CD8+) cells in colon lamina propria monocytes in mice. Furthermore, M3G down-regulated Notch signaling pathway-related proteins such as Notch1, notch intracellular domain (NICD), delta-like ligand 4 (DLL4), delta-like ligand 1 (DLL1), and hairy/enhancer of split 1 (Hes1) of colon tissue. The present results demonstrated that M3G can improve colonic mucosal barrier function by inhibiting the Notch signaling pathway.
اظهر المزيد [+] اقل [-]Malvidin-3-O-galactoside ameliorates colonic mucosal barrier function via the Notch signaling pathway النص الكامل
2024
Chunxue Zhang | Bo Zhang | Lin Zhang | Ahmed Adel Ashour | Yuehua Wang | Ying Zhang | Hui Tan | Li Li | Xinyao Jiao
The colonic mucosal barrier is an important component of the intestinal barrier, and its integrity is crucial for maintaining digestive tract homeostasis and normal metabolism in the body. This study aimed to elucidate the mechanisms by which malvidin-3-O-galactoside (M3G) might ameliorate colonic mucosal barrier function, from the perspective of physical barrier function and immune barrier function. Male C57BL/6J mice were given dextran sulfate sodium (DSS) to establish a mice model for colitis and then administrated with or without M3G for one week. The results showed that M3G supplementation significantly improved the disease activity index (DAI) score and colon tissue injury in mice with DSS-induced colitis. M3G improved the colonic physical barrier function by modulating the expression of mucin2 (MUC2), claudin-1, occludin, zona occludens 1 (ZO-1), and intestinal fatty acid binding protein (iFABP) in the colonic mucosa. Additionally, M3G also relieved the colonic immune barrier of mice by increasing the level of secretory immunoglobulin A (SIgA) in colon tissue and the percentages of CD4+T (CD3+CD4+) and CD8+T (CD3+CD8+) cells in colon lamina propria monocytes in mice. Furthermore, M3G down-regulated Notch signaling pathway-related proteins such as Notch1, notch intracellular domain (NICD), delta-like ligand 4 (DLL4), delta-like ligand 1 (DLL1), and hairy/enhancer of split 1 (Hes1) of colon tissue. The present results demonstrated that M3G can improve colonic mucosal barrier function by inhibiting the Notch signaling pathway.
اظهر المزيد [+] اقل [-]Nanoencapsulation of volatile plant essential oils: a paradigm shift in food industry practices النص الكامل
2024
Arooj Rehman Sheikh | Ricardo A. Wu-Chen | Anam Matloob | Muhammad Huzaifa Mahmood | Miral Javed
Nanoencapsulation of volatile plant essential oils: a paradigm shift in food industry practices النص الكامل
2024
Arooj Rehman Sheikh | Ricardo A. Wu-Chen | Anam Matloob | Muhammad Huzaifa Mahmood | Miral Javed
Essential oils (EOs) are plant aromas used in the food industry. They have attracted considerable attention due to their diverse properties, i.e., antimicrobial, antifungal, and antioxidant activities, with natural aroma and flavor as beneficial food additives. However, the instability, degradability, and hydrophobicity of EOs have limited their practical use in the food industry. Nanoencapsulation, a process where EOs are enclosed in a protective shell at the nanoscale, promises to enhance the biological properties of EOs. This process empowers EOs with excellent physiochemical stability and solubility, allowing for better distribution in food systems and controlled release for prolonged availability of EOs without rapid evaporation and instability. This review summarizes the recent works on encapsulating EOs to enhance their biological properties, providing a comprehensive overview of various specific nano-carriers and their applications in the food industry.
اظهر المزيد [+] اقل [-]Nanoencapsulation of volatile plant essential oils: a paradigm shift in food industry practices النص الكامل
2024
Arooj Rehman Sheikh | Ricardo A. Wu-Chen | Anam Matloob | Muhammad Huzaifa Mahmood | Miral Javed
Essential oils (EOs) are plant aromas used in the food industry. They have attracted considerable attention due to their diverse properties, i.e., antimicrobial, antifungal, and antioxidant activities, with natural aroma and flavor as beneficial food additives. However, the instability, degradability, and hydrophobicity of EOs have limited their practical use in the food industry. Nanoencapsulation, a process where EOs are enclosed in a protective shell at the nanoscale, promises to enhance the biological properties of EOs. This process empowers EOs with excellent physiochemical stability and solubility, allowing for better distribution in food systems and controlled release for prolonged availability of EOs without rapid evaporation and instability. This review summarizes the recent works on encapsulating EOs to enhance their biological properties, providing a comprehensive overview of various specific nano-carriers and their applications in the food industry.
اظهر المزيد [+] اقل [-]Quantitative analysis of curcumin compounds in ginger by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry النص الكامل
2024
Yixuan Jiang | Xiuhua Liu | Yinfeng Zhao | Jiguang Zhang | Jing Qiu | Yongzhong Qian | Rui Weng
Quantitative analysis of curcumin compounds in ginger by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry النص الكامل
2024
Yixuan Jiang | Xiuhua Liu | Yinfeng Zhao | Jiguang Zhang | Jing Qiu | Yongzhong Qian | Rui Weng
Curcumin compounds are important bioactive compounds in ginger, yet their analysis is limited by their low concentrations. In the current research, a highly sensitive and reliable approach for simultaneous quantitative detection of three curcumin compounds in ginger samples was established using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The extraction solvent, volume of extraction solvent, sonication time, and oscillation time were optimized by a single factor experiment. The method validation results showed that the regression coefficients were higher than 0.9990, and the linearity was satisfactory. Matrix effects were negligible with the values of 94.6%–98.8%. The recovery at three spiking levels was between 81.7% and 100.0%, and the precision was less than 5.4%. The approach could be used to determine the curcumin components in ginger samples since the results demonstrate that it is easy to use, practicable, repeatable, and accurate.
اظهر المزيد [+] اقل [-]Quantitative analysis of curcumin compounds in ginger by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry النص الكامل
2024
Yixuan Jiang | Xiuhua Liu | Yinfeng Zhao | Jiguang Zhang | Jing Qiu | Yongzhong Qian | Rui Weng
Curcumin compounds are important bioactive compounds in ginger, yet their analysis is limited by their low concentrations. In the current research, a highly sensitive and reliable approach for simultaneous quantitative detection of three curcumin compounds in ginger samples was established using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The extraction solvent, volume of extraction solvent, sonication time, and oscillation time were optimized by a single factor experiment. The method validation results showed that the regression coefficients were higher than 0.9990, and the linearity was satisfactory. Matrix effects were negligible with the values of 94.6%–98.8%. The recovery at three spiking levels was between 81.7% and 100.0%, and the precision was less than 5.4%. The approach could be used to determine the curcumin components in ginger samples since the results demonstrate that it is easy to use, practicable, repeatable, and accurate.
اظهر المزيد [+] اقل [-]Chemical profiles, dissolution patterns, and in vitro bioactivities of selenium-enriched green teas: impact of brewing conditions النص الكامل
2024
Yang Wei | Di Zhang | Yi Liang | Jiachen Shi | Kang Wei | Lanlan Peng | Haofeng Gu | Peihua Ma | Qian Wang | Zhanwang Zhu | Xinlin Wei | Yuanfeng Wang
Chemical profiles, dissolution patterns, and in vitro bioactivities of selenium-enriched green teas: impact of brewing conditions النص الكامل
2024
Yang Wei | Di Zhang | Yi Liang | Jiachen Shi | Kang Wei | Lanlan Peng | Haofeng Gu | Peihua Ma | Qian Wang | Zhanwang Zhu | Xinlin Wei | Yuanfeng Wang
The dissolution patterns of different teas determine the sensory quality and health attributes of the tea infusion. In this study, the chemical profiles of two typical selenium-enriched green teas, Xiazhou Bifeng (Se-BF), Enshi Yulu (Se-YL), and their corresponding regular green teas (BF and YL) were determined. Under the application of selenium fertilizer, the contents of caffeine, polyphenols, and gallic acid decreased, while the contents of theaflavins, theabrownins, and chlorophylls increased. The selenium content in BF and YL is 0.05−0.16 mg/kg and 0.33−0.43 mg/kg respectively, while after the application of exogenous selenium, the selenium content in Se-BF and Se-YL reached 1.28 to 2.17 mg/kg and 0.37−2.23 mg/kg respectively. The dissolution patterns of Se-BF and Se-YL were investigated under different brewing conditions (temperature and duration), and the main components of Se-YL were more easily dissolved out than Se-BF, which might be attributed to the steaming process of Se-YL. Based on the sensory evaluation of tea infusion, 100 °C and 5 min were the optimal brewing conditions. Based on a daily tea consumption model, the increased brewing time reduced the content of dissolved components in tea infusions, along with the decreased in vitro antioxidant and hypoglycemic activities. Collectively, Se-YL demonstrated superior sensory and nutritional attributes compared to Se-BF. This study explored the influence of brewing conditions on the dissolution patterns and in vitro bioactivities of selenium-enriched green teas, providing guidance for scientific tea brewing and consumption.
اظهر المزيد [+] اقل [-]Chemical profiles, dissolution patterns, and in vitro bioactivities of selenium-enriched green teas: impact of brewing conditions النص الكامل
2024
Yang Wei | Di Zhang | Yi Liang | Jiachen Shi | Kang Wei | Lanlan Peng | Haofeng Gu | Peihua Ma | Qian Wang | Zhanwang Zhu | Xinlin Wei | Yuanfeng Wang
The dissolution patterns of different teas determine the sensory quality and health attributes of the tea infusion. In this study, the chemical profiles of two typical selenium-enriched green teas, Xiazhou Bifeng (Se-BF), Enshi Yulu (Se-YL), and their corresponding regular green teas (BF and YL) were determined. Under the application of selenium fertilizer, the contents of caffeine, polyphenols, and gallic acid decreased, while the contents of theaflavins, theabrownins, and chlorophylls increased. The selenium content in BF and YL is 0.05−0.16 mg/kg and 0.33−0.43 mg/kg respectively, while after the application of exogenous selenium, the selenium content in Se-BF and Se-YL reached 1.28 to 2.17 mg/kg and 0.37−2.23 mg/kg respectively. The dissolution patterns of Se-BF and Se-YL were investigated under different brewing conditions (temperature and duration), and the main components of Se-YL were more easily dissolved out than Se-BF, which might be attributed to the steaming process of Se-YL. Based on the sensory evaluation of tea infusion, 100 °C and 5 min were the optimal brewing conditions. Based on a daily tea consumption model, the increased brewing time reduced the content of dissolved components in tea infusions, along with the decreased in vitro antioxidant and hypoglycemic activities. Collectively, Se-YL demonstrated superior sensory and nutritional attributes compared to Se-BF. This study explored the influence of brewing conditions on the dissolution patterns and in vitro bioactivities of selenium-enriched green teas, providing guidance for scientific tea brewing and consumption.
اظهر المزيد [+] اقل [-]Changes in the physicochemical and volatile profiles during the winemaking of Marselan in the Eastern Foot of Helan Mountain, China النص الكامل
2024
Lei Fang | Ningli Qi | Yajun Li | Tinghui Chen | Xiao Gong
Changes in the physicochemical and volatile profiles during the winemaking of Marselan in the Eastern Foot of Helan Mountain, China النص الكامل
2024
Lei Fang | Ningli Qi | Yajun Li | Tinghui Chen | Xiao Gong
Marselan wine, one of the most important wines in the Ningxia Hui Autonomous Region of China, has attracted much attention due to its unique quality. This study focused on determining and analyzing the changes in volatile flavor compounds and antioxidant activity during different stages of Marselan winemaking. A total of 40 volatile aroma compounds were identified by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Among these compounds, ethyl hexanoate, isoamyl acetate, ethyl formate, ethyl acetate, ethyl butanoate, ethyl octanoate, 3-methyl-1-butanol, ethanol, and 2-methyl-1-propanol showed significant increases after fermentation. Flavonoid and phenol contents in Marselan wine samples also significantly increased after fermentation, demonstrating high antioxidant capacity. Principal component analysis (PCA) successfully distinguished the fruit juice processing stage, alcohol fermentation stage, and malolactic fermentation stage, while the malolactic fermentation stage and wine stable stage could not be distinguished, This indicates that the formation of aroma profiles primarily occurs during the malolactic fermentation stage. The study successfully established flavor fingerprints of samples from different stages of Marselan wine production based on the detected volatile compounds.
اظهر المزيد [+] اقل [-]Changes in the physicochemical and volatile profiles during the winemaking of Marselan in the Eastern Foot of Helan Mountain, China النص الكامل
2024
Lei Fang | Ningli Qi | Yajun Li | Tinghui Chen | Xiao Gong
Marselan wine, one of the most important wines in the Ningxia Hui Autonomous Region of China, has attracted much attention due to its unique quality. This study focused on determining and analyzing the changes in volatile flavor compounds and antioxidant activity during different stages of Marselan winemaking. A total of 40 volatile aroma compounds were identified by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Among these compounds, ethyl hexanoate, isoamyl acetate, ethyl formate, ethyl acetate, ethyl butanoate, ethyl octanoate, 3-methyl-1-butanol, ethanol, and 2-methyl-1-propanol showed significant increases after fermentation. Flavonoid and phenol contents in Marselan wine samples also significantly increased after fermentation, demonstrating high antioxidant capacity. Principal component analysis (PCA) successfully distinguished the fruit juice processing stage, alcohol fermentation stage, and malolactic fermentation stage, while the malolactic fermentation stage and wine stable stage could not be distinguished, This indicates that the formation of aroma profiles primarily occurs during the malolactic fermentation stage. The study successfully established flavor fingerprints of samples from different stages of Marselan wine production based on the detected volatile compounds.
اظهر المزيد [+] اقل [-]Microbial enzymes: the bridge between Daqu flavor and microbial communities النص الكامل
2024
Zelong Zhong | Tianyi Liu | Kaiping He | Min Zhong | Xiaoxue Chen | Yansong Xue | Beizhong Han | Diqiang Wang | Jun Liu
Microbial enzymes: the bridge between Daqu flavor and microbial communities النص الكامل
2024
Zelong Zhong | Tianyi Liu | Kaiping He | Min Zhong | Xiaoxue Chen | Yansong Xue | Beizhong Han | Diqiang Wang | Jun Liu
Baijiu Daqu, a traditional component in the Baijiu brewing process, serves as both a 'saccharifying fermenting agent' and an 'aroma-producing catalyst', embodying a rich historical legacy. Daqu offers a diverse microorganism environment that is crucial for the fermentation of Baijiu. The distinctive flavor profile, a key attribute of Baijiu, is intricately linked to the microflora present in Daqu. To date, research on Daqu has primarily concentrated on the diversity of microbial communities, microbial interactions, flavor characteristics, and biochemical properties. The functional enzyme system in Daqu serves as a crucial link connecting the flavor of Baijiu with the microbial community of Daqu. However, reviews that particularly focus on the role of enzymes in determining the quality of Daqu have not yet been reported. Thus, here the types and production processes of Daqu are initially summarized. Then, the pathways involved in the production of the major flavor substances in Daqu are elucidated, as well as the role and contribution of different functional enzymes in the formation of Daqu flavor. Finally, the current technologies for improving Daqu flavor through microbial inoculation aree discussed, including the advantages, shortcomings, and bottlenecks of microbial inoculation. The findings gained in this study provide valuable information for the efficient production of high-quality Daqu for the brewing of Baijiu.
اظهر المزيد [+] اقل [-]Microbial enzymes: the bridge between Daqu flavor and microbial communities النص الكامل
2024
Zelong Zhong | Tianyi Liu | Kaiping He | Min Zhong | Xiaoxue Chen | Yansong Xue | Beizhong Han | Diqiang Wang | Jun Liu
Baijiu Daqu, a traditional component in the Baijiu brewing process, serves as both a 'saccharifying fermenting agent' and an 'aroma-producing catalyst', embodying a rich historical legacy. Daqu offers a diverse microorganism environment that is crucial for the fermentation of Baijiu. The distinctive flavor profile, a key attribute of Baijiu, is intricately linked to the microflora present in Daqu. To date, research on Daqu has primarily concentrated on the diversity of microbial communities, microbial interactions, flavor characteristics, and biochemical properties. The functional enzyme system in Daqu serves as a crucial link connecting the flavor of Baijiu with the microbial community of Daqu. However, reviews that particularly focus on the role of enzymes in determining the quality of Daqu have not yet been reported. Thus, here the types and production processes of Daqu are initially summarized. Then, the pathways involved in the production of the major flavor substances in Daqu are elucidated, as well as the role and contribution of different functional enzymes in the formation of Daqu flavor. Finally, the current technologies for improving Daqu flavor through microbial inoculation aree discussed, including the advantages, shortcomings, and bottlenecks of microbial inoculation. The findings gained in this study provide valuable information for the efficient production of high-quality Daqu for the brewing of Baijiu.
اظهر المزيد [+] اقل [-]Infrared guided smart food formulation: an innovative spectral reconstruction strategy to develop anticipated and constant apple puree products النص الكامل
2024
Zhenjie Wang | Sylvie Bureau | Benoit Jaillais | Catherine M. G. C. Renard | Xiao Chen | Yali Sun | Daizhu Lv | Leiqing Pan | Weijie Lan
Infrared guided smart food formulation: an innovative spectral reconstruction strategy to develop anticipated and constant apple puree products النص الكامل
2024
Zhenjie Wang | Sylvie Bureau | Benoit Jaillais | Catherine M. G. C. Renard | Xiao Chen | Yali Sun | Daizhu Lv | Leiqing Pan | Weijie Lan
An innovative chemometric method was developed to exploit visible and near-infrared (Vis-NIR) spectroscopy to guide food formulation to reach the anticipated and constant quality of final products. First, a total of 671 spectral variables related to the puree quality characteristics were identified by spectral variable selection methods. Second, the concentration profiles from multivariate curve resolution-alternative least squares (MCR-ALS) made it possible to reconstruct the identified spectral variables of formulated purees. Partial least square based on the reconstructed Vis-NIR spectral variables was evidenced to predict the final puree quality, such as a* values (RPD = 3.30), total sugars (RPD = 2.64), titratable acidity (RPD = 2.55) and malic acid (RPD = 2.67), based only on the spectral data of composed puree cultivars. These results open the possibility of controlling puree formulation: a multiparameter optimization of the color and taste of final puree products can be obtained using only the Vis-NIR spectral data of single-cultivar purees.
اظهر المزيد [+] اقل [-]Infrared guided smart food formulation: an innovative spectral reconstruction strategy to develop anticipated and constant apple puree products النص الكامل
2024
Zhenjie Wang | Sylvie Bureau | Benoit Jaillais | Catherine M. G. C. Renard | Xiao Chen | Yali Sun | Daizhu Lv | Leiqing Pan | Weijie Lan
An innovative chemometric method was developed to exploit visible and near-infrared (Vis-NIR) spectroscopy to guide food formulation to reach the anticipated and constant quality of final products. First, a total of 671 spectral variables related to the puree quality characteristics were identified by spectral variable selection methods. Second, the concentration profiles from multivariate curve resolution-alternative least squares (MCR-ALS) made it possible to reconstruct the identified spectral variables of formulated purees. Partial least square based on the reconstructed Vis-NIR spectral variables was evidenced to predict the final puree quality, such as a* values (RPD = 3.30), total sugars (RPD = 2.64), titratable acidity (RPD = 2.55) and malic acid (RPD = 2.67), based only on the spectral data of composed puree cultivars. These results open the possibility of controlling puree formulation: a multiparameter optimization of the color and taste of final puree products can be obtained using only the Vis-NIR spectral data of single-cultivar purees.
اظهر المزيد [+] اقل [-]Infrared guided smart food formulation: an innovative spectral reconstruction strategy to develop anticipated and constant apple puree products النص الكامل
2024
Wang, Zhenjie | Bureau, Sylvie | Jaillais, Benoit | Renard, Catherine, M.G.C. | Chen, Xiao | Sun, Yali | Lv, Daizhu | Pan, Leiqing | Lan, Weijie | Nanjing Agricultural University (NAU) | Sécurité et Qualité des Produits d'Origine Végétale (SQPOV) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS) | Statistique, Sensométrie et Chimiométrie (StatSC) ; École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Département Aliments, produits biosourcés et déchets - INRAE (TRANSFORM) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Sécurité et Qualité des Produits d'Origine Végétale (SQPOV) ; Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU) | Chinese Academy of Tropical Agricultural Sciences (CATAS) | This work was supported by the 'Interfaces' project, an Agropolis Foundation Flashship project publicly funded through the ANR (French Research Agency) under the 'Investissements d'Avenir' program ( Labex Agro, coordinated by Agropolis Fondation), the National Natural Science Foundation of China (NSFC,32302204), and Research Startup Foundation (ANR-10-LABX-01-001) Nanjing Agricultural University (No. 804120).
International audience | An innovative chemometric method was developed to exploit visible and near-infrared (Vis-NIR) spectroscopy to guide food formulation to reach the anticipated and constant quality of final products. First, a total of 671 spectral variables related to the puree quality characteristics were identified by spectral variable selection methods. Second, the concentration profiles from multivariate curve resolution-alternative least squares (MCR-ALS) made it possible to reconstruct the identified spectral variables of formulated purees. Partial least square based on the reconstructed Vis-NIR spectral variables was evidenced to predict the final puree quality, such as a* values (RPD = 3.30), total sugars (RPD = 2.64), titratable acidity (RPD = 2.55) and malic acid (RPD = 2.67), based only on the spectral data of composed puree cultivars. These results open the possibility of controlling puree formulation: a multiparameter optimization of the color and taste of final puree products can be obtained using only the VisNIR spectral data of single-cultivar purees.
اظهر المزيد [+] اقل [-]Comparing the appearance and phytochemical characterization of dried lily (L. davidii var. unicolor) bulbs processed by different drying technologies النص الكامل
2024
Lu Mi | Shini Yang | Xue Wang | Lei Xu | Yuhong Lin | Shuming Yang | Zhenzhen Xu
Comparing the appearance and phytochemical characterization of dried lily (L. davidii var. unicolor) bulbs processed by different drying technologies النص الكامل
2024
Lu Mi | Shini Yang | Xue Wang | Lei Xu | Yuhong Lin | Shuming Yang | Zhenzhen Xu
Lily bulbs are valued for their health benefits, and drying is a common method for their preservation. This study employed untargeted metabolomics using UHPLC-QTOF-MS to analyze the phytochemical profiles of lily bulbs dried by hot air (HD), microwave (MD), and vacuum freeze (FD) methods. In terms of appearance, FD samples exhibited minimal browning and wrinkling, while HD bulbs showed the most severe changes. Nineteen potential markers were identified, with HD samples showing higher levels of bitter amino acids, peptides, and N-fructosyl phenylalanine. The markers of FD samples were glutamine, coumarin, and p-coumaric acid. Notably, eleutheroside E was detected in lily bulbs for the first time and confirmed as an MD marker, with levels 1.51-fold and 6.19-fold higher than in FD and HD samples, respectively. MD method shows promise for enriching bioactive compounds in dried lily bulbs.
اظهر المزيد [+] اقل [-]Comparing the appearance and phytochemical characterization of dried lily (L. davidii var. unicolor) bulbs processed by different drying technologies النص الكامل
2024
Lu Mi | Shini Yang | Xue Wang | Lei Xu | Yuhong Lin | Shuming Yang | Zhenzhen Xu
Lily bulbs are valued for their health benefits, and drying is a common method for their preservation. This study employed untargeted metabolomics using UHPLC-QTOF-MS to analyze the phytochemical profiles of lily bulbs dried by hot air (HD), microwave (MD), and vacuum freeze (FD) methods. In terms of appearance, FD samples exhibited minimal browning and wrinkling, while HD bulbs showed the most severe changes. Nineteen potential markers were identified, with HD samples showing higher levels of bitter amino acids, peptides, and N-fructosyl phenylalanine. The markers of FD samples were glutamine, coumarin, and p-coumaric acid. Notably, eleutheroside E was detected in lily bulbs for the first time and confirmed as an MD marker, with levels 1.51-fold and 6.19-fold higher than in FD and HD samples, respectively. MD method shows promise for enriching bioactive compounds in dried lily bulbs.
اظهر المزيد [+] اقل [-]