خيارات البحث
النتائج 61 - 70 من 86
Physical, thermal, and storage stability of multilayered emulsion loaded with β-carotene النص الكامل
2024
Sivapratha Sivabalan | Carolyn F. Ross | Juming Tang | Shyam S. Sablani
Carotenoids are colored bioactive substances increasingly used due to their antioxidant properties, vitamin A precursor role, and ability to function as a natural food color. Knowledge of carotenoid behavior during high-heat processing and subsequent storage in emulsified food matrix is essential to expand their application natural food colors and neutraceuticals. Firstly, the physical, thermal, and colloidal stability of emulsions constructed from octenyl succinic anhydride-modified starch (OSA starch)-chitosan multilayered interfaces were investigated. Results of charge reversal from −32.4 ± 1.9 mV to +38.0 ± 0.8 mV indicate that multilayered interfaces were formed in emulsions. As measured by Z-average size, the emulsions were stable after the thermal treatment at 121 °C for 60 min, thus demonstrating a novel heat-stable multilayered emulsion. Subsequently, a select multilayered emulsion was loaded with β-carotene, and its storage stability was assessed. The degradation of β-carotene in an oil-in-water emulsion was better described with zeroth order kinetics; β-carotene dissolved in bulk oil was better described using a second-order kinetic equation. The presence of an encapsulating material around the oil droplets loaded with β-carotene enhanced its stability, which makes it instrumental in extending shelf-life and maintaining a consistent appearance. The results can be used to predict the availability of β-carotene during storage.
اظهر المزيد [+] اقل [-]Nanoencapsulation of volatile plant essential oils: a paradigm shift in food industry practices النص الكامل
2024
Arooj Rehman Sheikh | Ricardo A. Wu-Chen | Anam Matloob | Muhammad Huzaifa Mahmood | Miral Javed
Essential oils (EOs) are plant aromas used in the food industry. They have attracted considerable attention due to their diverse properties, i.e., antimicrobial, antifungal, and antioxidant activities, with natural aroma and flavor as beneficial food additives. However, the instability, degradability, and hydrophobicity of EOs have limited their practical use in the food industry. Nanoencapsulation, a process where EOs are enclosed in a protective shell at the nanoscale, promises to enhance the biological properties of EOs. This process empowers EOs with excellent physiochemical stability and solubility, allowing for better distribution in food systems and controlled release for prolonged availability of EOs without rapid evaporation and instability. This review summarizes the recent works on encapsulating EOs to enhance their biological properties, providing a comprehensive overview of various specific nano-carriers and their applications in the food industry.
اظهر المزيد [+] اقل [-]pH/glucose dual-responsive protein-based hydrogels with enhanced adhesive and antibacterial properties for diabetic wound healing النص الكامل
2024
Shuhua Yin | Maoping Duan | Matthias Fellner | Zhongjiang Wang | Chenyan Lv | Jiachen Zang | Guanghua Zhao | Tuo Zhang
Designing a wound dressing that offers excellent antibacterial properties while providing dual pH/glucose responsiveness for diabetic wound healing remains a considerable challenge. Herein, a 3D cross-linked native protein hydrogel was constructed through a Schiff base reaction based on -NH2 in paramyosin (PM) and -CHO in oxidized dextran (ODA) under mild conditions. Within the hydrogel, both amikacin and glucose oxidase were encapsulated during gelation. The resulting hydrogel exhibited favorable rheological properties, featuring self-healing, antibacterial activity, tissue adhesiveness, and excellent biocompatibility. Notably, the hydrogel demonstrated excellent pH/glucose dual-responsive properties. In infected wounds, the Schiff base bonds dissociated due to low pH, while in uninfected wounds with high blood glucose levels, the encapsulated glucose oxidase was functional, which also lowered the local pH level and dissociated the Schiff base bonds. Furthermore, the hydrogel quickly achieved pH/glucose dual responsiveness, leading to increased amikacin release to reduce bacterial invasion, alleviate oxidative stress, promote re-epithelialization and collagen deposition, and eventually accelerate diabetic wound healing. Collectively, the constructed hydrogel offers brand-new viewpoints on glucose-responsive biomaterials for diabetic wound therapy.
اظهر المزيد [+] اقل [-]Microfluidization of tender coconut water and its impact on spoilage enzymes and physicochemical properties النص الكامل
2024
P. S. Sruthi | A. Vanmathi Mugasundari | Shubham Nimbkar | Jeyan Arthur Moses | Vadakeppulpara Ramachandran Sinija
In this study, microfluidization was explored to inactivate autolytic spoilage enzymes (polyphenol oxidase, PPO, and peroxidase, POD) that significantly impact the nutritional and sensory qualities of tender coconut water (TCW). TCW was treated at three different pressure levels (70, 140, and 210 MPa) and five different number of passes/cycles (3, 5, 7, 9, and 11). The highest percentage reduction was obtained in the case of PPO (~61% in the 11th pass, at 210 MPa), while for POD, ~45% reduction was achieved in the 9th pass, at 70 MPa. The impact of different treatment conditions on the physicochemical properties of TCW, such as color, turbidity, total soluble solids (TSS), pH, titratable acidity, total phenolic content (TPC), and protein content was assessed. The pH and TSS remained unaffected; whereas, turbidity showed an increase with treatment intensity from 2.59% ± 0.14% (untreated) to 8.62% ± 0.39% (30,000 psi, 11 passes), and the highest color difference was observed for this sample (ΔE = 4.61 ± 0.018). Furthermore, TPC and antioxidant activity showed minimal changes upon treatment. Overall, the findings of this research provide new insights into the application of microfluidization for the processing of thermally sensitive products such as TCW, extending their shelf life without any additives and providing a clean label solution.
اظهر المزيد [+] اقل [-]The optimal precise temperature alleviated chilling injury and maintained post-harvest quality for 'Mengzi' pomegranate fruit النص الكامل
2024
Limei Li | Jinshan Luo | Xihong Li | Lingling Pang | Xiaoyu Jia | Lingling Liu | Miroslava Kačániová | Jitian Song | Liping Qiao
Chilling injury (CI) is a highly common physiological disorder in pomegranates during cold storage. Although several approaches have been investigated to mitigate the CI symptoms among some pomegranate cultivars, the fundamental and crucial environmental factor — the precise storage temperature for the 'Mengzi' cultivation remains unknown. This research evaluated the impact of storage temperatures of 0, 1, 2, 3, and 4 °C on the post-harvest quality of pomegranates. Results indicated that pomegranates stored at 2 °C exhibited the slightest color change and browning index. After storage of 130 d, pomegranates stored at 2 °C exhibited the lower CI index (82.79% reduction) and the lowest decay incidence (24.68% reduction) compared to those stored at 0 °C. The respiratory rate of pomegranates (2 °C) was also evidently suppressed (16.60%), along with a reduction in weight loss (3.46%). Furthermore, pomegranates stored at 2 °C exhibited the lowest activities of polyphenol oxidase (PPO) and peroxidase (POD), accompanied by the highest total phenolic content, which contributed to a reduction in malondialdehyde (MDA) accumulation. Relatively higher concentrations of soluble solids and titratable acid, as well as a higher sensory evaluation, were found in pomegranates stored at 2 °C. Consequently, it was inferred that the optimal temperature maintained cell membrane integrity modulated normal respiratory metabolism, and oxidative balance, and therefore alleviated CI and deterioration. This report can provide the guiding significance for the long-term storage of 'Mengzi' pomegranates under the condition of precise temperature control in phase temperature storage.
اظهر المزيد [+] اقل [-]Changes in the physicochemical and volatile profiles during the winemaking of Marselan in the Eastern Foot of Helan Mountain, China النص الكامل
2024
Lei Fang | Ningli Qi | Yajun Li | Tinghui Chen | Xiao Gong
Marselan wine, one of the most important wines in the Ningxia Hui Autonomous Region of China, has attracted much attention due to its unique quality. This study focused on determining and analyzing the changes in volatile flavor compounds and antioxidant activity during different stages of Marselan winemaking. A total of 40 volatile aroma compounds were identified by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Among these compounds, ethyl hexanoate, isoamyl acetate, ethyl formate, ethyl acetate, ethyl butanoate, ethyl octanoate, 3-methyl-1-butanol, ethanol, and 2-methyl-1-propanol showed significant increases after fermentation. Flavonoid and phenol contents in Marselan wine samples also significantly increased after fermentation, demonstrating high antioxidant capacity. Principal component analysis (PCA) successfully distinguished the fruit juice processing stage, alcohol fermentation stage, and malolactic fermentation stage, while the malolactic fermentation stage and wine stable stage could not be distinguished, This indicates that the formation of aroma profiles primarily occurs during the malolactic fermentation stage. The study successfully established flavor fingerprints of samples from different stages of Marselan wine production based on the detected volatile compounds.
اظهر المزيد [+] اقل [-]Gibberellins pre-treatment and storage at high relative humidity improved the quality of 'Eureka' lemon (Citrus limon (L.) Burm. f.) النص الكامل
2024
Dandan Li | Xihong Li | Ze Miao | Jin Du | Jinxiao Cheng | Shiting Hu | Yuhang Li | Yingying Zhang | Lingling Liu | Amr Farouk | Lu Li | Yuqian Jiang
The loss of pericarp greenness, wrinkling of the pericarp, and alteration of aroma are indicators of the ripening and senescence of lemons. In this study, lemons were soaked in 100 mg∙L-1 of gibberellin (GA) solutions for 5 min and stored at 14°C for 36 d under three relative humidity (RH) levels of 30%, 60%, and 90%, respectively. The changes in visual appearance, pigment metabolism, pericarpic microstructure, and volatile compounds of lemons during storage were evaluated. The results showed that GA pretreatment inhibited the color transformation from green to yellow of the flavedo and restrained fruit senescence. In addition, RH 90% effectively maintained the structural integrity of the oil gland, waxes, and stomata in the flavedo. GAs + RH 90% treatment maintained the fruit color index (L*, a*, b*, a*/b*, H°, C*) by inhibiting chlorophyll degradation and regulating carotenoid biosynthesis. Green lemons treated with GAs + RH 90% also showed reduced epidermal wrinkling, well-preserved cuticle, and stomatal structure, with a smooth and intact wax layer on the lemon pericarp. In addition, GAs + RH 90% treatment maintained the content of volatile aroma compounds, especially terpene. GAs + RH 90% had a great advantage in maintaining visual quality, delaying the deformation of tissue microstructure, preserving nutritional quality, and improving aroma. Thus, this treatment is potentially applicable for maintaining the storage quality of green lemons and extending their shelf life.
اظهر المزيد [+] اقل [-]Optimisation of vibrational spectroscopy instruments and pre-processing for classification problems across various decision parameters النص الكامل
2024
Joy Sim | Cushla McGoverin | Indrawati Oey | Russell Frew | Biniam Kebede
Vibrational spectroscopy is a green, rapid, and affordable analytical tool for analysing the quality, safety, and origin of biological materials in agri-food sectors. Pre-processing spectral data is crucial to removing instrumental interferences and physical artifacts when developing a classification model. However, there has yet to be a consensus on which spectral pre-processing method, settings, and decision parameters to use to optimise pre-processing for different spectroscopy tools. Using an arbitrary criterion poses a risk of applying the wrong type or too severe pre-processing that removes valuable information or affects the model's performance for prediction studies. Matthew's Correlation Coefficient (MCC) - a statistic for parameterising classification performance, accounts for data set imbalance and improved decisions on model selection to express uncertainty on future predictions. Four vibrational spectroscopy instruments [near-infrared (NIR), hyperspectral (HSI), mid-infrared (FTIR), and Raman] were compared using different pre-processing methods to understand the performance using MCC to classify coffee from four countries (Indonesia, Ethiopia, Brazil and Rwanda). Key decision parameters were evaluated for the development of reliable classification models. The best pre-processing for NIR was extended multiplicative scatter correction with mean centering (MNCN), and for HSI, Savitzky-Golay (1st derivative, 15 points) with MNCN. NIR performed the best across all four instruments, with FTIR performing the worst. Raman showed potential for coffee origin classification using the right pre-processing. Pre-processing with weighted least squares, normalisation, and MNCN eliminated the fluorescence effect on Raman spectral data. These findings show the feasibility of using MCC for classification problems.
اظهر المزيد [+] اقل [-]Compositional characteristics of red clover (Trifolium pratense) seeds and supercritical CO2 extracted seed oil as potential sources of bioactive compounds النص الكامل
2024
Ying Zhou | Ye Tian | Priscilla Ollennu-Chuasam | Maaria Kortesniemi | Katri Selander | Kalervo Väänänen | Baoru Yang
Plant seeds from the Fabaceae (Leguminosae) family are commonly edible. However, little has been done to study the phytochemicals of red clover (Trifolium pratense) seeds. Our study aims to obtain comprehensive and novel findings on red clover seeds and supercritical fluid extraction (SFE)-extracted oil, with the purpose of exploring their potential as a new source of functional ingredients for food and health care products. In our study, red clover seed oil was extracted by supercritical CO2. Forty-four phytochemical compounds were preliminarily identified in red clover seeds and the extracted oil by UPLC-ESI-MS/MS metabolomics method. These compounds mainly belong to lipids, phenolic compounds, terpenoids and phytosterols. Red clover seeds contain fatty acids (4,676.1 mg/100 g dried seeds) and bioactive components such as phenolic compounds (228.4 mg/100 g) and tocopherols (94.9 mg/100 g). In red clover seed oil, unsaturated fatty acids are over 83% and are rich in linoleic acid (54.7 g/100 g oil) and oleic acid (14.0 g/100 g oil). These findings provide important guidance for introducing red clover seed oil into pharmaceutical products or as functional foods.
اظهر المزيد [+] اقل [-]Recent progress and prospects in production and identification of umami peptides from marine proteins النص الكامل
2024
Di Hu | Zhenxiao Zheng | Botao Liang | Yating Jin | Cui Shi | Qianqian Chen | Lai Wei | Dongcheng Li | Chengcheng Li | Jing Ye | Zhiyuan Dai | Xiaoli Dong | Yanbin Lu
Umami peptides, the flavor compounds mainly derived from natural proteins, provide a pleasant taste for humans and exhibit a variety of biological activities, such as antioxidant and lipid-lowering properties. Marine proteins, which serve as excellent sources of umami peptides, have become a focal point of research. This review introduces the research progress on reported marine umami peptides. Firstly, it discusses the structural characteristics of umami peptides and the mechanism behind their formation to create an umami taste. It then presents several commonly used techniques for preparing and regulating umami peptides while summarizing the advantages and disadvantages of each technique. Finally, this review describes the potential application prospects for core technologies within Industry 4.0—such as molecular simulation, artificial intelligence, big data analysis, cloud computing, and blockchain technology—which could bring new opportunities for the development of marine umami peptides.
اظهر المزيد [+] اقل [-]