Refine search
Results 1-10 of 31
Metabolic syndrome and pesticides: A systematic review and meta-analysis
2022
Lamat, Hugo | Sauvant-Rochat, Marie-Pierre | Tauveron, Igor | Bagheri, Reza | Ugbolue, Ukadike C. | Maqdasi, Salwan | Navel, Valentin | Dutheil, Frédéric
The relation between pesticides exposure and metabolic syndrome (MetS) has not been clearly identified. Performing a systematic review and meta-analysis, PubMed, Cochrane Library, Embase, and ScienceDirect were searched for studies reporting the risk of MetS following pesticides exposure and their contaminants. We included 12 studies for a total of 6789 participants, in which 1981 (29.1%) had a MetS. Overall exposure to pesticides and their contaminants increased the risk of MetS by 30% (95CI 22%–37%). Overall organochlorine increased the risk of MetS by 23% (14–32%), as well as for most types of organochlorines: hexachlorocyclohexane increased the risk by 53% (28–78%), hexachlorobenzene by 40% (0.01–80%), dichlorodiphenyldichloroethylene by 22% (9–34%), dichlorodiphenyltrichloroethane by 28% (5–50%), oxychlordane by 24% (1–47%), and transnonchlor by 35% (19–52%). Sensitivity analyses confirmed that overall exposure to pesticides and their contaminants increased the risk by 46% (35–56%) using crude data or by 19% (10–29%) using fully-adjusted model. The risk for overall pesticides and types of pesticides was also significant with crude data but only for hexachlorocyclohexane (36% risk increase, 17–55%) and transnonchlor (25% risk increase, 3–48%) with fully-adjusted models. Metaregressions demonstrated that hexachlorocyclohexane increased the risk of MetS in comparison to most other pesticides. The risk increased for more recent periods (Coefficient = 0.28, 95CI 0.20 to 0.37, by year). We demonstrated an inverse relationship with body mass index and male gender. In conclusion, pesticides exposure is a major risk factor for MetS. Besides organochlorine exposure, data are lacking for other types of pesticides. The risk increased with time, reflecting a probable increase of the use of pesticides worldwide. The inverse relationship with body mass index may signify a stockage of pesticides and contaminants in fat tissue.
Show more [+] Less [-]Endocrine disrupting chemicals impact on ovarian aging: Evidence from epidemiological and experimental evidence
2022
Ding, Ting | Yan, Wei | Zhou, Ting | Shen, Wei | Wang, Tian | Li, Milu | Zhou, Su | Wu, Meng | Dai, Jun | Huang, Kecheng | Zhang, Jinjin | Chang, Jiang | Wang, Shixuan
Endocrine-disrupting chemicals (EDCs) are ubiquitous in daily life, but their harmful effects on the human body have not been fully explored. Recent studies have shown that EDCs exposure could lead to infertility, menstrual disorder and menopause, resulting in subsequent effects on female health. Therefore, it is of great significance to clarify and summarize the impacts of EDCs on ovarian aging for explaining the etiology of ovarian aging and maintaining female reproductive health. Here in this review, we focused on the impacts of ten typical environmental contaminants on the progression of ovarian aging during adult exposure, including epidemiological data in humans and experimental models in rodents, with their clinical phenotypes and underlying mechanisms. We found that both persistent (polychlorinated biphenyls, perfluoroalkyl and polyfluoroalkyl substances) and non-persistent (phthalates) EDCs exposure could increase an overall risk of ovarian aging, leading to the diminish of ovarian reserve, decline of fertility or fecundity, irregularity of the menstrual cycle and an earlier age at menopause, and/or premature ovarian insufficiency/failure in epidemiological studies. Among these, the loss of follicles can also be validated in experimental studies of some EDCs, such as BPA, phthalates, parabens and PCBs. The underlying mechanisms may involve the impaired ovarian follicular development by altering receptor-mediated pro-apoptotic pathways, inducing signal transduction and cell cycle arrest and epigenetic modification. However, there were inconsistent results in the impacts on fertility/fecundity, menstrual/estrous cycle and hormone changes response to different EDCs, and differences between human and animal studies. Our review summarizes the current state of knowledge on ovarian disrupters, highlights their risks to ovarian aging and identifies knowledge gaps in humans and animals. We therefore propose that females adopt healthy lifestyle changes to minimize their exposure to both persistent and non-persistent chemicals, that have the potential damage to their reproductive function.
Show more [+] Less [-]Long-chain perfluoroalkyl carboxylic acids in Pacific cods from coastal areas in northern Japan: A major source of human dietary exposure
2015
Fujii, Yukiko | Sakurada, T. (Tsukasa) | Harada, Kouji H. | Koizumi, Akio | Kimura, Osamu | Endo, Tetsuya | Haraguchi, Koichi
This study investigates perfluoroalkyl carboxylic acids (PFCAs) contamination of edible fish muscle from Japanese coastal waters. The concentrations of PFCAs with 8–14 carbon atoms (C8–C14) in Pacific cods in Hokkaido, Japan were 51 (median: pg/g-wet weight) for C8, 93 for C9, 99 for C10, 746 for C11, 416 for C12, 404 for C13, and 93 for C14. The levels of C9–C14 PFCAs in fish were strongly correlated to each other, but not to C8 and the other chlorinated persistent organic pollutants, indicating that C9–C14 PFCAs have a different emission source and/or bioaccumulation mechanism. The relative ratios between estimated PFCAs intake through fish consumption and the reported total dietary exposure of PFCAs were less than 1 for C8 to C9, but were more than 1 for C10 to C14. This result strongly suggests that fish consumption is a significant source of human dietary exposure to C10–C14 PFCAs.
Show more [+] Less [-]Persistent organic pollutants in eggs from south Texas Aplomado falcons
2021
Hidalgo, Chelsea M. | Mora, Miguel A. | Sericano, Jose L. | Mutch, Brian D. | Juergens, Paul W.
A program to reintroduce the Northern Aplomado falcon (Falco femoralis septentrionalis) in south Texas and the southwestern United States was initiated in the late 1970s. Fledgling Aplomado falcons were first released in the Laguna Atascosa National Wildlife Refuge in 1993 and the first nesting pair in the area was recorded by 1995. During 2004–2017 we collected addled eggs from nesting pairs in the Laguna Atascosa National Wildlife Refuge and Matagorda Island in south Texas, to determine if environmental contaminants in Aplomado falcon eggs had decreased over time and if eggshell thickness values were similar to those in the pre-DDT era. We analyzed organochlorine pesticides, PCBs, and PBDEs in 60 egg homogenates by gas chromatography-mass spectrometry. Eggshells were measured to determine thickness and to correlate with contaminant concentrations. Mean concentration in eggs were 244 ng/g ww for p,p’- DDE, 270 ng/g ww for PCBs and 10 ng/g ww for PBDEs. These values were lower than those reported in a previous study for eggs collected between 1999 and 2003, with a mean of 821 ng/g ww for p,p’-DDE and 1228 ng/g ww for total PCBs. Eggshell thickness ranged from 0.206 mm to 0.320 mm (n = 156). Overall, contaminant concentrations in eggs of Aplomado falcons were low, at levels not likely to impact the recovery of the species. Data from this and previous studies indicate that DDE has decreased significantly in eggs of Aplomado falcons over the last 25 years in south Texas. Breeding populations have been steady at over 30 breeding pairs in south Texas since 2011, although they decreased to 24 pairs in 2018 following Hurricane Harvey.
Show more [+] Less [-]Levels of polychlorinated biphenyls, organochlorine pesticides, mercury and lead in relation to shell thickness in marsh harrier (Circus aeruginosus) eggs from Charente-Maritime, France
1999
Pain, D.J. | Burneleau, G. | Bavoux, C. | Wyatt, C. (The Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL (United Kingdom))
Chlorinated hydrocarbons in the tissues of south polar skuas (Catharacta maccormicki) and Adelie penguins (Pygoscelis adeliea) from Ross Sea, Antarctica
1997
Court, G.S. | Davis, L.S. | Focardi, S. | Bargargli, R. | Fossi, C. | Leonzio, C. | Marili, L. (Department of Zoology, University of Otago, Dunedin (New Zealand))
Temporal changes in some chlorinated hydrocarbon residue levels of Canadian breast milk and infant exposure
1994
Mes, J. (Food Research Division, Bureau of Chemical Safety, Food Directorate, Health Protection Branch, Health and Welfare Canada, Tunney's Pasture, Ottawa K1A 0L2 (Canada))
Polychlorinated biphenyl and organochlorine insecticide residues in human adipose tissue in Poland
1993
Tanabe, S. | Falandysz, J. | Higaki, T. | Kannan, K. | Tatsukawa, R. (Department of Environment Conservation, Ehime University, Tarumi 3-5-7, Matsuyama 790 (Japan))
Clarification of effects of DDE on shell thickness, size, mass, and shape of avian eggs
1997
Blus, L.J. | Wiemeyer, S.N. | Bunck, C.M. (National Biological Service, Forest and Rangeland Ecosystem Science Center, Northwest Research Station, 3080 SE Clearwater Drive, Corvallis, OR 97333 (USA))
Concentrations of some organochlorines in otters (Lutra lutra L.) in Scotland: implications for populations
1996
Kruuk, H. | Conroy, J.W.H. (Institute of Terrestrial Ecology, Banchory AB31 4BY (United Kingdom))