Refine search
Results 1-10 of 16
The bisphenol A metabolite MBP causes proteome alterations in male Cyprinodon variegatus fish characteristic of estrogenic endocrine disruption
2022
Schönemann, Alexandre M. | Moreno Abril, Sandra Isabel | Diz, Angel P. | Beiras, Ricardo
The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 10⁵-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 μg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.
Show more [+] Less [-]Microbiological treatments of cheese whey with fatty acids and hydrogen recovery
1992
Daffonchio, D. (Milano Univ. (Italy). Dipt. di Scienze e Tecnologie Alimentari e Microbiologiche) | Ranalli, G. | Sorlini, C.
Combined anaerobic digestion of animal slurries and food industry liquid by-products
1992
Georgacakis, D. | Tsavdaris, A. (Agricultural Univ. of Athens (Greece). Dept. of Agricultural Engineering)
Influence of immobilization supports on the kinetic constants of anaerobic digestion of cheese whey
1992
Borja, R. (Instituto de la Grasa y sus Derivados, Sevilla (Spain)) | Martin, A. | Fiestas, J.A. | Duran, M.M. | Luque, M. | Colmenarejo, J.M.
Anaerobic digestion of a mixture of cheese whey, poultry waste and cattle dung: a study of the use of adsorbents to improve digester performance
1994
Desai, M. | Madamwar, D. (Post-Graduate Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat (India))
Elimination of oxidative stress and genotoxicity of biosynthesized titanium dioxide nanoparticles in rats via supplementation with whey protein-coated thyme essential oil
2021
Abdel-Wahhab, Mosaad A. | El-Nekeety, Aziza A. | Mohammed, Hagar E | Elshafey, Ola I. | Abdel-Aziem, Sekena H. | Hassan, Nabila S.
The green synthesis of metal nanoparticles is growing dramatically; however, the toxicity of these biosynthesized particles against living organisms is not fully explored. Therefore, this study was designed to synthesize and characterize TiO₂-NPs, encapsulation and characterization thyme essential oil (ETEO), and determination of the bioactive constituents of ETEO using GC-MS and evaluate their protective role against TiO₂-NPs-induced oxidative damage and genotoxicity in rats. Six groups of rats were treated orally for 30 days including the control group, TiO₂-NPs (300 mg/kg b.w)-treated group, ETEO at low (50 mg/kg b.w) or high dose (100 mg/kg b.w)-treated groups, and TiO₂-NPs plus ETEO at the two doses-treated groups. Blood and tissues were collected for different assays. The GC-MS results indicated the presence of 21 compounds belonging to phenols, terpene derivatives, and heterocyclic compounds. The synthesized TiO₂-NPs were 45 nm tetragonal particles with a zeta potential of −27.34 mV; however, ETEO were 119 nm round particles with a zeta potential of −28.33 mV. TiO₂-NPs administration disturbs the liver and kidney markers, lipid profile, cytokines, oxidative stress parameters, the apoptotic and antioxidant hepatic mRNA expression, and induced histological alterations in the liver and kidney tissues. ETEO could improve all these parameters in a dose-dependent manner. It could be concluded that ETEO is a promising candidate for the protection against TiO₂-NPs and can be applied safely in food applications.
Show more [+] Less [-]Efficiency of sweet whey fermentation with psychrophilic methanogens
2021
Dębowski, Marcin | Korzeniewska, Ewa | Kazimierowicz, Joanna | Zieliński, Marcin
Sweet whey is a waste product from the dairy industry that is difficult to manage. High hopes are fostered regarding its neutralization in the methane fermentation. An economically viable alternative to a typical mesophilic fermentation seems to be the process involving psychrophilic bacteria isolated from the natural environment. This study aimed to determine the feasibility of exploiting psychrophilic microorganisms in methane fermentation of sweet whey. The experiments were carried out under dynamic conditions using Bio Flo 310 type flow-through anaerobic bioreactors. The temperature inside the reactors was 10 ± 1 °C. The HRT was 20 days and the OLR was 0.2 g COD/dm³/day. The study yielded 132.7 ± 13.8 mL biogas/gCODᵣₑₘₒᵥₑd. The CH₄ concentration in the biogas was 32.7 ± 1.6%, that of H₂ was 8.7 ± 4.7%, whereas that of CO₂ reached 58.42 ± 2.47%. Other gases were also determined, though in lower concentrations. The COD and BOD₅ removal efficiency reached 21.4 ± 0.6% and 17.6 ± 1.0%, respectively.
Show more [+] Less [-]Production of plant growth–promoting bacteria inoculants from composting leachate to develop durable agricultural ecosystems
2021
Santiago Badillo, Tania Patricia | Pham, Thi Thanh Ha | Nadeau, Mireille | Allard-Massicotte, Rosalie | Jacob-Vaillancourt, Colin | Heitz, Michèle | Avalos Ramirez, Antonio
Composting process of residual organic material generates considerable amounts of liquid leachate which contains high organic load. This waste stream can be considered as potential nutrient source to support microbial growth. In the present work, the utilization of compost leachate as fermentation substrate for Bacillus species production was studied. The physicochemical properties of the leachate and two co-substrates (residual yeast and whey permeate) were determined. The characterization of leachate showed that it is a potential source of carbon, but its nitrogen content may limit the bacterial growth. In order to determine a good recipe of culture medium for fermentation of individual strains of Bacillus species, leachate was added with yeast and whey permeate. Raw and diluted leachates with and without amendments were tested in shake-flask fermentation assays. Results showed that Bacillus sp. grew better in diluted leachate than in raw leachate. When co-substrates were added, the growth was improved and the sporulation rate also increased. Since the aim was to produce plant growth–promoting bacteria, one of the objectives of fermentation assays was the production of viable bacteria when Bacillus sp. arrives to soil as component of a fertilizer. For this reason, the obtention of sporulated Bacillus cells was desired. The highest sporulation rate was obtained with co-substrates, inducing more than 89% of vegetative cells to develop spores. This approach of leachate valorization will produce economical benefits reducing the volume of leachate waste to be treated, as well as contribute in a cost-effective production of biological amendments in a circular economy mode.
Show more [+] Less [-]Comparison of Performances of Kinetic Models for Biomethane Production with Cheese Whey Mixtures
2022
Manav-Demir, Neslihan | Unal, Elif
This paper summarizes findings from a study in which the biochemical methane potential (BMP) of cheese whey was investigated. The cheese whey and mixtures of it with various co-substrates were used in anaerobic serum bottles for a period of about 90 days. The effects of inoculum were also investigated using granular anaerobic sludge from gum industry and anaerobic sludge from a municipal wastewater treatment plant. A total of 14 groups were set with two different inoculums and various substrate mixtures. The highest cumulative biogas and methane production were observed as 1229 mL and 790 mL, respectively, for a mixture of 50% whey, 33% slaughterhouse wastewater, and 17% cattle manure inoculated with granular anaerobic sludge. The highest BMP was obtained for whey (diluted to 13%) inoculated with anaerobic sludge as 360 mLCH₄/gCODₐddₑd. Methane percentages in headspace for all serum bottles were above 50%. Several kinetic models to predict biogas production were calibrated. Results showed that the first-order model and the transference function showed the best prediction performance for most of the serum bottles.
Show more [+] Less [-]Whey effluent packed tower trickling filtration
1971